vertex connectivity
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 13 (2) ◽  
pp. 450-467
Author(s):  
S. Pirzada ◽  
Bilal A. Rather ◽  
Rezwan Ul Shaban ◽  
Merajuddin

Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues ρ 1 Q ≥ ρ 2 Q ≥ ⋯ ≥ ρ n Q \rho _1^Q \ge \rho _2^Q \ge \cdots \ge \rho _n^Q , the distance signless Laplacian energy DSLE(G) is defined as D S L E ( G ) = ∑ i = 1 n | ρ i Q - 2 W ( G ) n | DSLE\left( G \right) = \sum\nolimits_{i = 1}^n {\left| {\rho _i^Q - {{2W\left( G \right)} \over n}} \right|} where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph Kk ∨ ( Kt∪ Kn−k−t), 1 ≤ t ≤ ⌊ n - k 2 ⌋ 1 \le t \le \left\lfloor {{{n - k} \over 2}} \right\rfloor has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.


2021 ◽  
Author(s):  
Lina Ba ◽  
Heping Zhang

Abstract As a generalization of vertex connectivity, for connected graphs $G$ and $T$, the $T$-structure connectivity $\kappa (G; T)$ (resp. $T$-substructure connectivity $\kappa ^{s}(G; T)$) of $G$ is the minimum cardinality of a set of subgraphs $F$ of $G$ that each is isomorphic to $T$ (resp. to a connected subgraph of $T$) so that $G-F$ is disconnected. For $n$-dimensional hypercube $Q_{n}$, Lin et al. showed $\kappa (Q_{n};K_{1,1})=\kappa ^{s}(Q_{n};K_{1,1})=n-1$ and $\kappa (Q_{n};K_{1,r})=\kappa ^{s}(Q_{n};K_{1,r})=\lceil \frac{n}{2}\rceil $ for $2\leq r\leq 3$ and $n\geq 3$ (Lin, C.-K., Zhang, L.-L., Fan, J.-X. and Wang, D.-J. (2016) Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97–107). Sabir et al. obtained that $\kappa (Q_{n};K_{1,4})=\kappa ^{s}(Q_{n};K_{1,4})= \lceil \frac{n}{2}\rceil $ for $n\geq 6$ and for $n$-dimensional folded hypercube $FQ_{n}$, $\kappa (FQ_{n};K_{1,1})=\kappa ^{s}(FQ_{n};K_{1,1})=n$, $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ with $2\leq r\leq 3$ and $n\geq 7$ (Sabir, E. and Meng, J.(2018) Structure fault tolerance of hypercubes and folded hypercubes. Theor. Comput. Sci., 711, 44–55). They proposed an open problem of determining $K_{1,r}$-structure connectivity of $Q_n$ and $FQ_n$ for general $r$. In this paper, we obtain that for each integer $r\geq 2$, $\kappa (Q_{n};K_{1,r})$  $=\kappa ^{s}(Q_{n};K_{1,r})$  $=\lceil \frac{n}{2}\rceil $ and $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ for all integers $n$ larger than $r$ in quare scale. For $4\leq r\leq 6$, we separately confirm the above result holds for $Q_n$ in the remaining cases.


Author(s):  
Jason Li ◽  
Danupon Nanongkai ◽  
Debmalya Panigrahi ◽  
Thatchaphol Saranurak ◽  
Sorrachai Yingchareonthawornchai
Keyword(s):  

2021 ◽  
Vol 17 (2) ◽  
pp. 1-25
Author(s):  
Chandra Chekuri ◽  
Alina Ene ◽  
Ali Vakilian

We consider node-weighted survivable network design (SNDP) in planar graphs and minor-closed families of graphs. The input consists of a node-weighted undirected graph G = ( V , E ) and integer connectivity requirements r ( uv ) for each unordered pair of nodes uv . The goal is to find a minimum weighted subgraph H of G such that H contains r ( uv ) disjoint paths between u and v for each node pair uv . Three versions of the problem are edge-connectivity SNDP (EC-SNDP), element-connectivity SNDP (Elem-SNDP), and vertex-connectivity SNDP (VC-SNDP), depending on whether the paths are required to be edge, element, or vertex disjoint, respectively. Our main result is an O ( k )-approximation algorithm for EC-SNDP and Elem-SNDP when the input graph is planar or more generally if it belongs to a proper minor-closed family of graphs; here, k = max  uv r ( uv ) is the maximum connectivity requirement. This improves upon the O ( k log  n )-approximation known for node-weighted EC-SNDP and Elem-SNDP in general graphs [31]. We also obtain an O (1) approximation for node-weighted VC-SNDP when the connectivity requirements are in {0, 1, 2}; for higher connectivity our result for Elem-SNDP can be used in a black-box fashion to obtain a logarithmic factor improvement over currently known general graph results. Our results are inspired by, and generalize, the work of Demaine, Hajiaghayi, and Klein [13], who obtained constant factor approximations for node-weighted Steiner tree and Steiner forest problems in planar graphs and proper minor-closed families of graphs via a primal-dual algorithm.


2021 ◽  
Vol 37 ◽  
pp. 295-315
Author(s):  
Derek Young

It is known that the zero forcing number of a graph is an upper bound for the maximum nullity of the graph (see [AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. Cioab$\breve{\text{a}}$, D. Cvetkovi$\acute{\text{c}}$, S. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanovi$\acute{\text{c}}$, H. van der Holst, K. Vander Meulen, and A. Wangsness). Linear Algebra Appl., 428(7):1628--1648, 2008]). In this paper, we search for characteristics of a graph that guarantee the maximum nullity of the graph and the zero forcing number of the graph are the same by studying a variety of graph parameters that give lower bounds on the maximum nullity of a graph. Inparticular, we introduce a new graph parameter which acts as a lower bound for the maximum nullity of the graph. As a result, we show that the Aztec Diamond graph's maximum nullity and zero forcing number are the same. Other graph parameters that are considered are a Colin de Verdiére type parameter and vertex connectivity. We also use matrices, such as a divisor matrix of a graph and an equitable partition of the adjacency matrix of a graph, to establish a lower bound for the nullity of the graph's adjacency matrix.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Yalan Li ◽  
Shumin Zhang ◽  
Chengfu Ye

A vertex subset F   ⊆   V G is a cyclic vertex-cut of a connected graph G if G − F is disconnected and at least two of its components contain cycles. The cyclic vertex-connectivity κ c G is denoted as the cardinality of a minimum cyclic vertex-cut. In this paper, we show that the cyclic vertex-connectivity of the n , k -star network S n , k is κ c S n , k = n + 2 k − 5 for any integer n ≥ 4 and k ≥ 2 .


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ma Feilong ◽  
J Swaroop Guntupalli ◽  
James V Haxby

Intelligent thought is the product of efficient neural information processing, which is embedded in fine-grained, topographically organized population responses and supported by fine-grained patterns of connectivity among cortical fields. Previous work on the neural basis of intelligence, however, has focused on coarse-grained features of brain anatomy and function because cortical topographies are highly idiosyncratic at a finer scale, obscuring individual differences in fine-grained connectivity patterns. We used a computational algorithm, hyperalignment, to resolve these topographic idiosyncrasies and found that predictions of general intelligence based on fine-grained (vertex-by-vertex) connectivity patterns were markedly stronger than predictions based on coarse-grained (region-by-region) patterns. Intelligence was best predicted by fine-grained connectivity in the default and frontoparietal cortical systems, both of which are associated with self-generated thought. Previous work overlooked fine-grained architecture because existing methods could not resolve idiosyncratic topographies, preventing investigation where the keys to the neural basis of intelligence are more likely to be found.


2021 ◽  
Vol 26 (2) ◽  
pp. 133-147
Author(s):  
Priya K. ◽  
Anil Kumar V.
Keyword(s):  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhen-Mu Hong ◽  
Zheng-Jiang Xia ◽  
Fuyuan Chen ◽  
Lutz Volkmann

Let G be a connected graph with minimum degree δ G and vertex-connectivity κ G . The graph G is k -connected if κ G ≥ k , maximally connected if κ G = δ G , and super-connected if every minimum vertex-cut isolates a vertex of minimum degree. In this paper, we present sufficient conditions for a graph with given minimum degree to be k -connected, maximally connected, or super-connected in terms of the number of edges, the spectral radius of the graph, and its complement, respectively. Analogous results for triangle-free graphs with given minimum degree to be k -connected, maximally connected, or super-connected are also presented.


2021 ◽  
Vol 344 (2) ◽  
pp. 112197
Author(s):  
Jun Liang ◽  
Dingjun Lou ◽  
Zan-Bo Zhang

Sign in / Sign up

Export Citation Format

Share Document