induced subgraph
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 81)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 68 (6) ◽  
pp. 1-33
Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Cyril Gavoille ◽  
Gwenaël Joret ◽  
Piotr Micek ◽  
...  

We show that there exists an adjacency labelling scheme for planar graphs where each vertex of an n -vertex planar graph G is assigned a (1 + o(1)) log 2 n -bit label and the labels of two vertices u and v are sufficient to determine if uv is an edge of G . This is optimal up to the lower order term and is the first such asymptotically optimal result. An alternative, but equivalent, interpretation of this result is that, for every positive integer n , there exists a graph U n with n 1+o(1) vertices such that every n -vertex planar graph is an induced subgraph of U n . These results generalize to a number of other graph classes, including bounded genus graphs, apex-minor-free graphs, bounded-degree graphs from minor closed families, and k -planar graphs.


Author(s):  
Purnima Gupta ◽  
Deepti Jain

In a graph [Formula: see text], a set [Formula: see text] is a [Formula: see text]-point set dominating set (in short 2-psd set) of [Formula: see text] if for every subset [Formula: see text] there exists a nonempty subset [Formula: see text] containing at most two vertices such that the induced subgraph [Formula: see text] is connected in [Formula: see text]. The [Formula: see text]-point set domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of a 2-psd set of [Formula: see text]. The main focus of this paper is to find the value of [Formula: see text] for a separable graph and thereafter computing [Formula: see text] for some well-known classes of separable graphs. Further we classify the set of all 2-psd sets of a separable graph into six disjoint classes and study the existence of minimum 2-psd sets in each class.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Norah Almalki ◽  
Pawaton Kaemawichanurat

A vertex subset D of G is a dominating set if every vertex in V(G)∖D is adjacent to a vertex in D. A dominating set D is independent if G[D], the subgraph of G induced by D, contains no edge. The domination number γ(G) of a graph G is the minimum cardinality of a dominating set of G, and the independent domination number i(G) of G is the minimum cardinality of an independent dominating set of G. A classical work related to the relationship between γ(G) and i(G) of a graph G was established in 1978 by Allan and Laskar. They proved that every K1,3-free graph G satisfies γ(G)=i(H). Hexagonal systems (2 connected planar graphs whose interior faces are all hexagons) have been extensively studied as they are used to present bezenoid hydrocarbon structures which play an important role in organic chemistry. The domination numbers of hexagonal systems have been studied continuously since 2018 when Hutchinson et al. posted conjectures, generated from a computer program called Conjecturing, related to the domination numbers of hexagonal systems. Very recently in 2021, Bermudo et al. answered all of these conjectures. In this paper, we extend these studies by considering the relationship between the domination number and the independent domination number of hexagonal systems. Although every hexagonal system H with at least two hexagons contains K1,3 as an induced subgraph, we find many classes of hexagonal systems whose domination number is equal to an independent domination number. However, we establish the existence of a hexagonal system H such that γ(H)<i(H) with the prescribed number of hexagons.


2021 ◽  
Vol 13 (2) ◽  
pp. 356-366
Author(s):  
Dániel Gerbner ◽  
Abhishek Methuku ◽  
Dániel T. Nagy ◽  
Balázs Patkós ◽  
Máté Vizer

Abstract In this short note we consider the oriented vertex Turán problem in the hypercube: for a fixed oriented graph F → \vec F , determine the maximum cardinality e x v ( F → , Q → n ) e{x_v}\left( {\vec F,{{\vec Q}_n}} \right) of a subset U of the vertices of the oriented hypercube Q → n {\vec Q_n} such that the induced subgraph Q → n [ U ] {\vec Q_n}\left[ U \right] does not contain any copy of F → \vec F . We obtain the exact value of e x v ( P k , →   Q n → ) e{x_v}\left( {\overrightarrow {{P_k},} \,\overrightarrow {{Q_n}} } \right) for the directed path P k → \overrightarrow {{P_k}} , the exact value of e x v ( V 2 → ,   Q n → ) e{x_v}\left( {\overrightarrow {{V_2}} ,\,\overrightarrow {{Q_n}} } \right) for the directed cherry V 2 → \overrightarrow {{V_2}} and the asymptotic value of e x v ( T → , Q n → ) e{x_v}\left( {\overrightarrow T ,\overrightarrow {{Q_n}} } \right) for any directed tree T → \vec T .


Author(s):  
Jerlin Seles M ◽  
◽  
Dr. U. Mary ◽  

The COVID-19 pandemic has asserted major baseline facts from disaster anthropology during the last three decades. Resilience could be based on the solution to the question: "What is the maximum amount of destruction, if any, that the graph (a network) can sustain while ensuring that at least one of each technology type remains and that the remaining induced subgraph is properly colored?" The concept of a graph's Chromatic Core Subgraph is a solution to the stated problem. In this paper, the pandemic graphs and certain sequential graphs are developed. For these graphs, the Chromatic core subgraph is obtained. The results of the pandemic graphs' Chromatic core subgraph are used to develop a disaster recovery strategy for the COVID-19 pandemic.


Author(s):  
Stefano Coniglio ◽  
Stefano Gualandi

In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k-rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is [Formula: see text]-hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.


Author(s):  
C. R. Subramanian

We introduce and study an inductively defined analogue [Formula: see text] of any increasing graph invariant [Formula: see text]. An invariant [Formula: see text] is increasing if [Formula: see text] whenever [Formula: see text] is an induced subgraph of [Formula: see text]. This inductive analogue simultaneously generalizes and unifies known notions like degeneracy, inductive independence number, etc., into a single generic notion. For any given increasing [Formula: see text], this gets us several new invariants and many of which are also increasing. It is also shown that [Formula: see text] is the minimum (over all orderings) of a value associated with each ordering. We also explore the possibility of computing [Formula: see text] (and a corresponding optimal vertex ordering) and identify some pairs [Formula: see text] for which [Formula: see text] can be computed efficiently for members of [Formula: see text]. In particular, it includes graphs of bounded [Formula: see text] values. Some specific examples (like the class of chordal graphs) have already been studied extensively. We further extend this new notion by (i) allowing vertex weighted graphs, (ii) allowing [Formula: see text] to take values from a totally ordered universe with a minimum and (iii) allowing the consideration of [Formula: see text]-neighborhoods for arbitrary but fixed [Formula: see text]. Such a generalization is employed in designing efficient approximations of some graph optimization problems. Precisely, we obtain efficient algorithms (by generalizing the known algorithm of Ye and Borodin [Y. Ye and A. Borodin, Elimination graphs, ACM Trans. Algorithms 8(2) (2012) 1–23] for special cases) for approximating optimal weighted induced [Formula: see text]-subgraphs and optimal [Formula: see text]-colorings (for hereditary [Formula: see text]’s) within multiplicative factors of (essentially) [Formula: see text] and [Formula: see text] respectively, where [Formula: see text] denotes the inductive analogue (as defined in this work) of optimal size of an unweighted induced [Formula: see text]-subgraph of the input and [Formula: see text] is the minimum size of a forbidden induced subgraph of [Formula: see text]. Our results generalize the previous result on efficiently approximating maximum independent sets and minimum colorings on graphs of bounded inductive independence number to optimal [Formula: see text]-subgraphs and [Formula: see text]-colorings for arbitrary hereditary classes [Formula: see text]. As a corollary, it is also shown that any maximal [Formula: see text]-subgraph approximates an optimal solution within a factor of [Formula: see text] for unweighted graphs, where [Formula: see text] is maximum size of any induced [Formula: see text]-subgraph in any local neighborhood [Formula: see text].


Author(s):  
Nitisha Singhwal ◽  
Palagiri Venkata Subba Reddy

Let [Formula: see text] be a simple, undirected and connected graph. A vertex [Formula: see text] of a simple, undirected graph [Formula: see text]-dominates all edges incident to at least one vertex in its closed neighborhood [Formula: see text]. A set [Formula: see text] of vertices is a vertex-edge dominating set of [Formula: see text], if every edge of graph [Formula: see text] is [Formula: see text]-dominated by some vertex of [Formula: see text]. A vertex-edge dominating set [Formula: see text] of [Formula: see text] is called a total vertex-edge dominating set if the induced subgraph [Formula: see text] has no isolated vertices. The total vertex-edge domination number [Formula: see text] is the minimum cardinality of a total vertex-edge dominating set of [Formula: see text]. In this paper, we prove that the decision problem corresponding to [Formula: see text] is NP-complete for chordal graphs, star convex bipartite graphs, comb convex bipartite graphs and planar graphs. The problem of determining [Formula: see text] of a graph [Formula: see text] is called the minimum total vertex-edge domination problem (MTVEDP). We prove that MTVEDP is linear time solvable for chain graphs and threshold graphs. We also show that MTVEDP can be approximated within approximation ratio of [Formula: see text]. It is shown that the domination and total vertex-edge domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MTVEDP is presented.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qi Li ◽  
Khalique Newaz ◽  
Tijana Milenković

Abstract Background This study focuses on the task of supervised prediction of aging-related genes from -omics data. Unlike gene expression methods for this task that capture aging-specific information but ignore interactions between genes (i.e., their protein products), or protein–protein interaction (PPI) network methods for this task that account for PPIs but the PPIs are context-unspecific, we recently integrated the two data types into an aging-specific PPI subnetwork, which yielded more accurate aging-related gene predictions. However, a dynamic aging-specific subnetwork did not improve prediction performance compared to a static aging-specific subnetwork, despite the aging process being dynamic. This could be because the dynamic subnetwork was inferred using a naive Induced subgraph approach. Instead, we recently inferred a dynamic aging-specific subnetwork using a methodologically more advanced notion of network propagation (NP), which improved upon Induced dynamic aging-specific subnetwork in a different task, that of unsupervised analyses of the aging process. Results Here, we evaluate whether our existing NP-based dynamic subnetwork will improve upon the dynamic as well as static subnetwork constructed by the Induced approach in the considered task of supervised prediction of aging-related genes. The existing NP-based subnetwork is unweighted, i.e., it gives equal importance to each of the aging-specific PPIs. Because accounting for aging-specific edge weights might be important, we additionally propose a weighted NP-based dynamic aging-specific subnetwork. We demonstrate that a predictive machine learning model trained and tested on the weighted subnetwork yields higher accuracy when predicting aging-related genes than predictive models run on the existing unweighted dynamic or static subnetworks, regardless of whether the existing subnetworks were inferred using NP or the Induced approach. Conclusions Our proposed weighted dynamic aging-specific subnetwork and its corresponding predictive model could guide with higher confidence than the existing data and models the discovery of novel aging-related gene candidates for future wet lab validation.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Rakib Iqbal ◽  
Muhammad Shoaib Sardar ◽  
Dalal Alrowaili ◽  
Sohail Zafar ◽  
Imran Siddique

For a connected simple graph G , a nonempty subset S of V G is a connected safe set if the induced subgraph G S is connected and the inequality S ≥ D satisfies for each connected component D of G∖S whenever an edge of G exists between S and D . A connected safe set of a connected graph G with minimum cardinality is called the minimum connected safe set and that minimum cardinality is called the connected safe numbers. We study connected safe sets with minimal cardinality of the ladder, sunlet, and wheel graphs.


Sign in / Sign up

Export Citation Format

Share Document