Dynamics: The Nonrelativistic Theory

Author(s):  
Jaroslav Zamastil ◽  
Jakub Benda
Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.


1991 ◽  
Vol 43 (3) ◽  
pp. 1186-1196 ◽  
Author(s):  
X. L. Yang ◽  
S. H. Guo ◽  
F. T. Chan ◽  
K. W. Wong ◽  
W. Y. Ching

2009 ◽  
Vol 324 (12) ◽  
pp. 2561-2578 ◽  
Author(s):  
A.D. Alhaidari ◽  
H. Bahlouli ◽  
M.S. Abdelmonem

1954 ◽  
Vol 32 (8) ◽  
pp. 530-537
Author(s):  
F. A. Kaempffer

The conditions are examined under which the procedure of quantum hydrodynamics would be a consequence of the conventional quantization procedure, and vice versa. Using the classical nonrelativistic theory of a charged medium as an example, it is shown that the commutation rules of the two procedures differ by a factor 2, if in accordance with an idea by Geilikman the wave function of the classical theory is expanded as ψ = ψ0 + ψ1, with ψ0 a constant and [Formula: see text], and if terms of higher than second order in ψ1 are neglected in the hydrodynamical description of the theory.


Sign in / Sign up

Export Citation Format

Share Document