Single-Channel Speech Enhancement in the Time Domain

Author(s):  
Jacob Benesty ◽  
Israel Cohen
2014 ◽  
pp. 47-63
Author(s):  
Jacob Benesty ◽  
Jesper Jensen ◽  
Mads Graesboll Christensen ◽  
Jingdong Chen

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 116
Author(s):  
Xiangfa Zhao ◽  
Guobing Sun

Automatic sleep staging with only one channel is a challenging problem in sleep-related research. In this paper, a simple and efficient method named PPG-based multi-class automatic sleep staging (PMSS) is proposed using only a photoplethysmography (PPG) signal. Single-channel PPG data were obtained from four categories of subjects in the CAP sleep database. After the preprocessing of PPG data, feature extraction was performed from the time domain, frequency domain, and nonlinear domain, and a total of 21 features were extracted. Finally, the Light Gradient Boosting Machine (LightGBM) classifier was used for multi-class sleep staging. The accuracy of the multi-class automatic sleep staging was over 70%, and the Cohen’s kappa statistic k was over 0.6. This also showed that the PMSS method can also be applied to stage the sleep state for patients with sleep disorders.


2012 ◽  
Vol 20 (7) ◽  
pp. 1948-1963 ◽  
Author(s):  
Jesper Rindom Jensen ◽  
Jacob Benesty ◽  
Mads Græsbøll Christensen ◽  
Søren Holdt Jensen

2021 ◽  
Author(s):  
Suparerk Janjarasjitt

Abstract The preterm birth anticipation is a crucial task that can reduce the rate of preterm birth and also the complications of preterm birth. Electrohysterogram (EHG) or uterine electromyogram (EMG) data have been evidenced that they can provide an information useful for preterm birth anticipation. Four distinct time-domain features, i.e., mean absolute value, average amplitude change, difference absolute standard deviation value, and log detector, commonly applied to EMG signal processing are applied and investigated in this study. A single-channel of EHG data is decomposed into its constituent components, i.e., intrinsic mode functions, using empirical mode decomposition (EMD) before their time-domain features are extracted. The time-domain features of intrinsic mode functions of EHG data associated with preterm and term births are applied for preterm-term birth classification using support vector machine (SVM) with a radial basis function. The preterm-term classifications are validated using 10-fold cross validation. From the computational results, it is shown that the excellent preterm-term birth classification can be achieved using a single-channel of EHG data. The computational results further suggest that the best overall performance on preterm-term birth classification is obtained when thirteen (out of sixteen) EMD-based time-domain features are applied. The best accuracy, sensitivity, specificity, and F1-score achieved are, respectively, 0.9382, 0.9130, 0.9634, and 0.9366.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 374
Author(s):  
Mohamed Nabih Ali ◽  
Daniele Falavigna ◽  
Alessio Brutti

Robustness against background noise and reverberation is essential for many real-world speech-based applications. One way to achieve this robustness is to employ a speech enhancement front-end that, independently of the back-end, removes the environmental perturbations from the target speech signal. However, although the enhancement front-end typically increases the speech quality from an intelligibility perspective, it tends to introduce distortions which deteriorate the performance of subsequent processing modules. In this paper, we investigate strategies for jointly training neural models for both speech enhancement and the back-end, which optimize a combined loss function. In this way, the enhancement front-end is guided by the back-end to provide more effective enhancement. Differently from typical state-of-the-art approaches employing on spectral features or neural embeddings, we operate in the time domain, processing raw waveforms in both components. As application scenario we consider intent classification in noisy environments. In particular, the front-end speech enhancement module is based on Wave-U-Net while the intent classifier is implemented as a temporal convolutional network. Exhaustive experiments are reported on versions of the Fluent Speech Commands corpus contaminated with noises from the Microsoft Scalable Noisy Speech Dataset, shedding light and providing insight about the most promising training approaches.


Sign in / Sign up

Export Citation Format

Share Document