Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall

Author(s):  
Conrad C. Labandeira ◽  
John M. Anderson ◽  
Heidi M. Anderson
2017 ◽  
Author(s):  
Paul M Barrett ◽  
Tim Broderick ◽  
Kimberley Chapelle ◽  
Jonah Choiniere ◽  
Steve Edwards ◽  
...  

Southern Africa provides critical information on Late Triassic–Early Jurassic terrestrial tetrapod faunas. Most of the localities in this region are in South Africa and Lesotho, but preliminary work in Zimbabwe has revealed significant potential. Early Jurassic Zimbabwean localities have yielded the basal sauropodomorph Massospondylus, the early sauropod Vulcanodon and theropod material. Late Triassic localities are also known, but have yielded only fragmentary specimens thus far. In early 2017, a joint South African-Zimbabwean-UK team conducted fieldwork in the upper Karoo-aged deposits along the shores of Lake Kariba, northern Zimbabwe (Mid-Zambesi Basin). We relocated the Vulcanodon type locality on Island 126/127 and found that, contrary to previous reports suggesting a Toarcian age, the quarry was in a horizon pre-dating the onset of Drakensburg volcanism (= Batoka Basalts). It is situated instead within the earlier Lower Jurassic Forest Sandstone. This indicates that Vulcanodon is 10–15 million years older than thought previously, recalibrating several nodes within Sauropoda and indicating extensive overlap between true sauropods and 'prosauropods'. Other new vertebrate localities show that sauropodomorphs are present in the Forest Sandstone and upper Tashinga (Late Triassic) formations, but a grey mudstone facies within the Pebbly Arkose Member of the latter unit yields a more aquatic fauna, including lungfish and phytosaurs, but lacking sauropodomorphs. The phytosaur occurrence is the first in Africa south of the Sahara. Faunal and sedimentological evidence indicates that the Late Triassic and Early Jurassic sites in this region were deposited under more mesic environments than their lateral equivalents in South Africa.


2019 ◽  
Vol 160 ◽  
pp. 103610 ◽  
Author(s):  
Frederick Tolchard ◽  
Sterling J. Nesbitt ◽  
Julia B. Desojo ◽  
Pia Viglietti ◽  
Richard J. Butler ◽  
...  
Keyword(s):  

Paleobiology ◽  
1996 ◽  
Vol 22 (3) ◽  
pp. 318-328 ◽  
Author(s):  
John Anderson ◽  
Heidi Anderson ◽  
Paul Fatti ◽  
Herbert Sichel

Fitting the generalized inverse Gaussian-Poisson distribution (GIGP) to observed frequency distributions of taxa from the Late Triassic Molteno Formation of South Africa has yielded estimates of the corresponding preserved biodiversities. Three extrapolations have been made on the basis of the uniquely rich megaflora/insect coassemblages from 100 taphocoenoses: insect species—335 observed, 7740 preserved; vegetative species—206 observed, 667 preserved; gymnosperm ovulate orders—16 observed, 84 preserved. The reliability of the results varies according to the abundance and observed diversity of the taxa. These results, with further estimations in a companion paper of existed diversity (regional, continental and global), hint at Late Triassic floral and faunal richness akin to today. This conflicts with the traditionally held model of an increasing cone of biodiversity through time and suggests a phase of explosive evolution in the Triassic hitherto unsuspected. Application of the GIGP to other well-documented collections from other periods might reveal a pattern of diversity trends offering fundamentally new insights into the evolving terrestrial biosphere.


2017 ◽  
Author(s):  
Paul M Barrett ◽  
Tim Broderick ◽  
Kimberley Chapelle ◽  
Jonah Choiniere ◽  
Steve Edwards ◽  
...  

Southern Africa provides critical information on Late Triassic–Early Jurassic terrestrial tetrapod faunas. Most of the localities in this region are in South Africa and Lesotho, but preliminary work in Zimbabwe has revealed significant potential. Early Jurassic Zimbabwean localities have yielded the basal sauropodomorph Massospondylus, the early sauropod Vulcanodon and theropod material. Late Triassic localities are also known, but have yielded only fragmentary specimens thus far. In early 2017, a joint South African-Zimbabwean-UK team conducted fieldwork in the upper Karoo-aged deposits along the shores of Lake Kariba, northern Zimbabwe (Mid-Zambesi Basin). We relocated the Vulcanodon type locality on Island 126/127 and found that, contrary to previous reports suggesting a Toarcian age, the quarry was in a horizon pre-dating the onset of Drakensburg volcanism (= Batoka Basalts). It is situated instead within the earlier Lower Jurassic Forest Sandstone. This indicates that Vulcanodon is 10–15 million years older than thought previously, recalibrating several nodes within Sauropoda and indicating extensive overlap between true sauropods and 'prosauropods'. Other new vertebrate localities show that sauropodomorphs are present in the Forest Sandstone and upper Tashinga (Late Triassic) formations, but a grey mudstone facies within the Pebbly Arkose Member of the latter unit yields a more aquatic fauna, including lungfish and phytosaurs, but lacking sauropodomorphs. The phytosaur occurrence is the first in Africa south of the Sahara. Faunal and sedimentological evidence indicates that the Late Triassic and Early Jurassic sites in this region were deposited under more mesic environments than their lateral equivalents in South Africa.


2011 ◽  
Vol 23 (4) ◽  
pp. 379-385 ◽  
Author(s):  
Benjamin Bomfleur ◽  
Rudolph Serbet ◽  
Edith L. Taylor ◽  
Thomas N. Taylor

AbstractFossil leaves of the Voltziales, an ancestral group of conifers, rank among the most common plant fossils in the Triassic of Gondwana. Even though the foliage taxon Heidiphyllum has been known for more than 150 years, our knowledge of the reproductive organs of these conifers still remains very incomplete. Seed cones assigned to Telemachus have become increasingly well understood in recent decades, but the pollen cones belonging to these Mesozoic conifers are rare. In this contribution we describe the first compression material of a voltzialean pollen cone from Upper Triassic strata of the Transantarctic Mountains. The cone can be assigned to Switzianthus Anderson & Anderson, a genus that was previously assumed to belong to an enigmatic group of pteridosperms from the Triassic Molteno Formation of South Africa. The similarities of cuticle and pollen morphology, together with co-occurrence at all known localities, indicate that Switzianthus most probably represents the pollen organ of the ubiquitous Heidiphyllum/Telemachus plant.


Sign in / Sign up

Export Citation Format

Share Document