Using Superheated Steam Dryer for Cogeneration System Improvement and Water Recovery

Author(s):  
Somchart Chantasiriwan ◽  
Sarocha Charoenvai
Author(s):  
Farshid Zabihian ◽  
Alan S. Fung ◽  
Fabio Schuler

Gas turbine-based power plants generate a significant portion of world’s electricity. This paper presents the modeling of a gas turbine-based cogeneration cycle. One of the reasons for the relatively low efficiency of a single gas turbine cycle is the waste of high-grade energy at its exhaust stream. In order to recover this wasted energy, steam and/or hot water can be cogenerated to improve the cycle efficiency. In this work, a cogeneration power plant is introduced to use this wasted energy to produce superheated steam for industrial processes. The cogeneration system model was developed based on the data from the Whitby cogeneration power plant in ASPEN PLUS®. The model was validated against the operational data of the existing power plant. The electrical and total (both electrical and thermal) efficiencies were around 40% and 70% (LHV), respectively. It is shown that cogenerating electricity and steam not only significantly improve the general efficiency of the cycle but it can also recover the output and efficiency losses of the gas turbine as a result of high ambient temperature by generating more superheated steam. Furthermore, this work shows that the model could capture the operation of the systems with an acceptable accuracy.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


2010 ◽  
Vol 130 (5) ◽  
pp. 646-654 ◽  
Author(s):  
Miao Hong ◽  
Satoshi Horie ◽  
Yushi Miura ◽  
Tosifumi Ise ◽  
Yuki Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document