Characteristics of Diesel Fuel Combustion in a Burner with Injection of a Superheated Steam Jet

Fuel ◽  
2019 ◽  
Vol 254 ◽  
pp. 115723 ◽  
Author(s):  
I.S. Anufriev ◽  
S.V. Alekseenko ◽  
O.V. Sharypov ◽  
E.P. Kopyev

2016 ◽  
Vol 52 (3) ◽  
pp. 286-293 ◽  
Author(s):  
S. V. Alekseenko ◽  
I. S. Anufriev ◽  
M. S. Vigriyanov ◽  
E. P. Kopyev ◽  
O. V. Sharypov

2017 ◽  
Vol 24 (3) ◽  
pp. 99-105 ◽  
Author(s):  
Ireneusz Pielecha ◽  
Jacek Pielecha ◽  
Maciej Skowron ◽  
Aleksander Mazanek

Abstract The process of fuel combustion in a diesel engine is determined by factors existing during liquid fuel injection and atomisation. The physicochemical properties of the fuel to a large extent decide upon the quality of this phase of cylinder fuelling. So it is important to ensure appropriate properties of a fuel affecting its atomisation and, as a result, combustion. The paper deals with the topic of diesel oil improvers and the analysis of their influence on atomisation and combustion indices. In the studies base diesel oil and a diesel fuel improved by a package of additives, were used. The process of conventional and improved fuel injection was analysed by using optical examinations. The amount of released heat was evaluated during the studies carried out on combustion. Significant aspects of the applied improvers in relation to fuel injection and its combustion have been indicated.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohammed A. Fayad ◽  

Engine injection strategy and renewable fuel both can improve nitrogen oxides (NOX) and smoke/soot emissions in a common-rail compression ignition (CI) diesel engine. The effects of different postinjection (PI) timings (15, 30, and 45) after top dead center (aTDC) and injection pressures (550 and 650 bar) on pollutant emissions and smoke/soot emissions were investigated for combustion of a renewable fuel (soybean biodiesel). The results showed that the levels of carbon monoxide (CO), hydrocarbons (HCs), and NOX are reduced from the combustion of soybean biodiesel compared to the diesel fuel combustion for different injection strategy. Besides, NOX emission is clearly reduced with retarded PI timing, especially at 45°. It is found that the increasing injection pressure reduced gaseous emissions for both fuels. The combination between biodiesel fuel and injection strategy can provide meaningful improvements in pollutant emissions, as well as enhance the exhaust temperature compared to the diesel fuel. With biodiesel fueling, smoke/soot emissions were reduced from biodiesel combustion (by 19.7%) under different fuel injection timings and pressures rather than from the diesel fuel combustion (by 12.2%).


2021 ◽  
Vol 31 (3) ◽  
pp. 349-363
Author(s):  
Sergey А. Plotnikov ◽  
Anatoly N. Kartashevich ◽  
Marina V. Motovilova

Introduction. The expansion of the fleet of tractors and vehicles causes increased requirements for internal combustion engines. This problem can be solved by improving the work process in a diesel engine that can be achieved by heating the diesel fuel in the fuel supply system. External thermal action is carried out on the high pressure line directly in front of the injectors. Materials and Methods. To analyze and calculate the process of combustion and heat release in a diesel engine with preliminary thermal fuel preparation, bench tests were carried out using the National Instruments software and the necessary equipment. Results. Experimental data of the diesel fuel combustion process in the cylinder of the 4CHN 11.0/12.5 engine are obtained. The analysis of the combustion performance and heat release of diesel with a preliminary high-temperature effect on the fuel was carried out. Indicator diagrams, graphs of heat release, the maximum average temperature of gases in the engine cylinder, and graphs of active and total heat release were constructed. The experimental data showed a decrease in the ignition delay period, the maximum cycle temperature in the engine cylinders, and an acceleration of the start of heat release and combustion process. The values of the parameters of the diesel fuel combustion process are obtained. Discussion and Conclusion. On the basis of the conducted studies, the dependences of the parameters of the combustion process of a diesel engine with fuel heating to high temperatures are revealed. Indicator diagrams allow drawing a conclusion about the influence of the fuel heating temperature on the intensification of the combustion process. There is an acceleration of the beginning of heat release, a decrease in the rate of pressure build-up and in the rigidity of the engine.


2019 ◽  
Vol 33 (3) ◽  
pp. 2489-2501
Author(s):  
Qiang Cheng ◽  
Hulkkonen Tuomo ◽  
Ossi Kaario ◽  
Larmi Martti

Sign in / Sign up

Export Citation Format

Share Document