A Tableau System for Instantial Neighborhood Logic

Author(s):  
Junhua Yu
Keyword(s):  
Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 115 ◽  
Author(s):  
Joanna Golińska-Pilarek ◽  
Magdalena Welle

We study deduction systems for the weakest, extensional and two-valued non-Fregean propositional logic SCI . The language of SCI is obtained by expanding the language of classical propositional logic with a new binary connective ≡ that expresses the identity of two statements; that is, it connects two statements and forms a new one, which is true whenever the semantic correlates of the arguments are the same. On the formal side, SCI is an extension of classical propositional logic with axioms characterizing the identity connective, postulating that identity must be an equivalence and obey an extensionality principle. First, we present and discuss two types of systems for SCI known from the literature, namely sequent calculus and a dual tableau-like system. Then, we present a new dual tableau system for SCI and prove its soundness and completeness. Finally, we discuss and compare the systems presented in the paper.


2020 ◽  
Vol 176 (3-4) ◽  
pp. 349-384
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

In this paper we consider the most common TBox and ABox reasoning services for the description logic 𝒟ℒ〈4LQSR,x〉(D) ( 𝒟 ℒ D 4,× , for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment 4LQSR. 𝒟 ℒ D 4,× is a very expressive description logic. It combines the high scalability and efficiency of rule languages such as the SemanticWeb Rule Language (SWRL) with the expressivity of description logics. In fact, among other features, it supports Boolean operations on concepts and roles, role constructs such as the product of concepts and role chains on the left-hand side of inclusion axioms, role properties such as transitivity, symmetry, reflexivity, and irreflexivity, and data types. We further provide a KE-tableau-based procedure that allows one to reason on the main TBox and ABox reasoning tasks for the description logic 𝒟 ℒ D 4,× . Our algorithm is based on a variant of the KE-tableau system for sets of universally quantified clauses, where the KE-elimination rule is generalized in such a way as to incorporate the γ-rule. The novel system, called KEγ-tableau, turns out to be an improvement of the system introduced in [1] and of standard first-order KE-tableaux [2]. Suitable benchmark test sets executed on C++ implementations of the three mentioned systems show that in several cases the performances of the KEγ-tableau-based reasoner are up to about 400% better than the ones of the other two systems.


Author(s):  
Patrick Blackburn ◽  
Thomas Bolander ◽  
Torben Braüner ◽  
Klaus Frovin Jørgensen
Keyword(s):  

2015 ◽  
Vol 27 (1) ◽  
pp. 81-107
Author(s):  
Patrick Blackburn ◽  
Thomas Bolander ◽  
Torben Braüner ◽  
Klaus Frovin Jørgensen
Keyword(s):  

10.29007/dhz5 ◽  
2018 ◽  
Author(s):  
Guido Fiorino

In this paper we use the Kripke semantics characterization of Dummett logic to introduce a new way of handling non-forced formulas in tableau proof systems. We pursue the aim of reducing the search space by strictly increasing the number of forced propositional variables after the application of non-invertible rules. The focus of the paper is on a new tableau system for Dummett logic, for which we have an implementation. The ideas presented can be extended to intuitionistic logic and intermediate logics as well.


2007 ◽  
pp. 93-97
Author(s):  
Miodrag Kapetanovic

A tableau system for the predicate logic with countable conjunctions and disjunctions is presented and the completeness of the set of rules proved. These tableaux are used to prove a slightly more general form of the Malitz interpolation theorem.


Author(s):  
Julian Charles Bradfield
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document