scholarly journals Discrete Energy Laws for the First-Order System Least-Squares Finite-Element Approach

Author(s):  
J. H. Adler ◽  
I. Lashuk ◽  
S. P. MacLachlan ◽  
L. T. Zikatanov
2013 ◽  
Vol 51 (4) ◽  
pp. 2214-2237 ◽  
Author(s):  
K. Liu ◽  
T. A. Manteuffel ◽  
S. F. McCormick ◽  
J. W. Ruge ◽  
L. Tang

2020 ◽  
Vol 08 (10) ◽  
pp. 2072-2090
Author(s):  
André Schmidt ◽  
Horst R. Beyer ◽  
Matthias Hinze ◽  
Evangelos N. Vandoros

2019 ◽  
Vol 19 (3) ◽  
pp. 631-643 ◽  
Author(s):  
Chad R. Westphal

AbstractThis paper develops a new finite element approach for the efficient approximation of classical solutions of the elliptic Monge–Ampère equation. We use an outer Newton-like linearization and a first-order system least-squares reformulation at the continuous level to define a sequence of first-order div-curl systems. For problems on convex domains with smooth and appropriately bounded data, this framework gives robust results: convergence of the nonlinear iteration in a small number of steps, and optimal finite element convergence rates with respect to the meshsize. Numerical results using standard piecewise quadratic or cubic elements for all unknowns illustrate convergence results.


Sign in / Sign up

Export Citation Format

Share Document