model fluid
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 2 (1) ◽  
pp. 38-43
Author(s):  
Jun-ichi Ono ◽  
Takushi Oiwa ◽  
Yasuo Ogasawara ◽  
Seiichi Mochizuki

Background: In recent years, many reports have investigated the usefulness of brachial artery blood flow (BAF) measured by ultrasonography as an evaluation index for the vascular access (VA) stenosis of hemodialysis patients. However, the mechanism of VA dysfunction, despite BAF being higher than the preset blood flow, has not been clarified to date. Methods: The relationship between actual blood-removal flow and recirculation rate with decreasing VA flow was examined using a VA flow path model and pure water as a model fluid. The blood-flow rate was set at 180 mL/min, and the set VA flow rate was lowered stepwise from 350 to 50 mL/min. VA flow rate, blood-removal flow rate, and flow waveform measured between two needle-puncture sites were recorded, and then the actual blood-removal flow rate and recirculation rate were calculated. Results: Recirculation was observed at a VA flow rate < 300 mL/min. The recirculation was due to the VA flow rate, which was transiently reduced to the level below the blood-removal flow rate, resulting in backflow. In contrast, no decrease in the actual blood-removal flow rate was observed. Conclusion: It is suggested that the mechanism of the VA dysfunction, despite the BAF being higher than the preset blood-flow rate, was due to the diastolic BAF being lower than the blood-removal flow rate.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1609
Author(s):  
Carlos Granero-Belinchón ◽  
Stéphane G. Roux ◽  
Nicolas B. Garnier

We introduce an index based on information theory to quantify the stationarity of a stochastic process. The index compares on the one hand the information contained in the increment at the time scale τ of the process at time t with, on the other hand, the extra information in the variable at time t that is not present at time t−τ. By varying the scale τ, the index can explore a full range of scales. We thus obtain a multi-scale quantity that is not restricted to the first two moments of the density distribution, nor to the covariance, but that probes the complete dependences in the process. This index indeed provides a measure of the regularity of the process at a given scale. Not only is this index able to indicate whether a realization of the process is stationary, but its evolution across scales also indicates how rough and non-stationary it is. We show how the index behaves for various synthetic processes proposed to model fluid turbulence, as well as on experimental fluid turbulence measurements.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1895
Author(s):  
Ralf Berger ◽  
Markus Apel ◽  
Gottfried Laschet ◽  
Wilhelm Jessen ◽  
Wolfgang Schröder ◽  
...  

The permeability of the semi-solid state is important for the compensation of volume shrinkage during solidification, since insufficient melt feeding can cause casting defects such as hot cracks or pores. Direct measurement of permeability during the dynamical evolution of solidification structures is almost impossible, and numerical simulations are the best way to obtain quantitative values. Equiaxed solidification of the Al-Si-Mg alloy A356 was simulated on the microscopic scale using the phase field method. Simulated 3D solidification structures for different stages along the solidification path were digitally processed and scaled up to generate 3D models by additive manufacturing via fused filament fabrication (FFF). The Darcy permeability of these models was determined by measuring the flow rate and the pressure drop using glycerol as a model fluid. The main focus of this work is a comparison of the measured permeability to results from computational fluid flow simulations in the phase field framework. In particular, the effect of the geometrical constraint due to isolated domain walls in a unit cell with a periodic microstructure is discussed. A novel method to minimize this effect is presented. For permeability values varying by more than two orders of magnitude, the largest deviation between measured and simulated permeabilities is less than a factor of two.


Author(s):  
Michel Molina Del Sol ◽  
Eduardo Arbieto Alarcon ◽  
Rafael José Iorio

In this study, we continue our study of the Cauchy problem associated with the Brinkman equations [see (1.1) and (1.2) below] which model fluid flow in certain types of porous media. Here, we will consider the flow in the upper half-space \[ \mathbb{R}_{+}^{3}=\left\{\left(x,y,z\right) \in\mathbb{R}^{3}\left\vert z\geqslant 0\right.\right\}, \] under the assumption that the plane $z=0$ is impenetrable to the fluid. This means that we will have to introduce boundary conditions that must be attached to the Brinkman equations. We study local and global well-posedness in appropriate Sobolev spaces introduced below, using Kato's theory for quasilinear equations, parabolic regularization and a comparison principle for the solutions of the problem.


2021 ◽  
pp. 113033
Author(s):  
George Ruppeiner ◽  
Peter Mausbach ◽  
Helge-Otmar May

2021 ◽  
Vol 11 (3) ◽  
pp. 1185-1198
Author(s):  
Qingchao Li ◽  
Lingling Liu ◽  
Baohai Yu ◽  
Linian Guo ◽  
Sheng Shi ◽  
...  

AbstractBorehole collapse will pose a threat to the safety of equipment and personnel during drilling operation. In this paper, a finite element multi-field coupling model for investigating borehole collapse in hydrate reservoir was developed. In this model, fluid seepage, heat transfer, hydrate dissociation and borehole deformation are all considered. Based on which, effects of drilling fluid density on both of hydrate dissociation and borehole collapse are investigated. The investigation results show that disturbance of drilling fluid invasion to hydrate reservoir will lead to hydrate dissociation around wellbore, and dissociation range narrows obviously with the increase in drilling fluid density. When the relative fluid density is 0.98, natural gas hydrates in reservoir with a width of about 16.65 cm around wellbore dissociate completely. However, dissociation range of natural gas hydrate has decreased to 12.08 cm when the relative fluid density is 1.10. Moreover, hydrate dissociation around wellbore caused by drilling fluid invasion may lead to borehole collapse, and borehole collapse can be significantly restrained with the increase in relative fluid density. Borehole enlargement rate is 33.67% when the relative fluid density is 0.98, but nearly no collapse area displays around wellbore when the relative fluid density increases to 1.12. In addition, investigation herein can provide an idea for designing drilling fluid density in hydrate reservoir when different allowable borehole enlargement rate is considered. The minimum fluid density designed for avoiding disastrous borehole collapse increases nonlinearly when higher requirements for borehole stability are proposed.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Siavash Honari ◽  
Ehsan Seyedi Hosseininia

Sand production is a complex phenomenon caused by the erosion of borehole walls during the extraction of hydrocarbons. In this paper, the sanding process in a typical Thick-Walled Hollow Cylinder (TWHC) test is numerically simulated. The main objective of the study is to model the particulate mechanism of sand production in granular assemblies with different bonding conditions and examine the effects of parameters such as stress level and cavity size on the sanding model. Due to the discrete nature of sand particles, the Discrete Element Method (DEM) is chosen to model solid particles, and the Lattice-Boltzmann Method (LBM) is implemented to simulate fluid flow through the solid particulate medium. A computer program is developed using the Immersed Moving Boundary (IMB) approach to couple the two methods and model fluid–solid interactions. After the program is validated, the simulations were conducted on 2D models representing cross-sections of TWHC samples under radial fluid flow. The results show that the developed program is able to capture complicated stages of sand production already observed in experiments. The program also proves to be a promising tool in the parametric study of sand production. It successfully simulates different aspects of the sanding phenomenon, including the scale effect, the extension of failure zones in samples under incremental stress, and the stress relaxation during rapid particle erosion.


2021 ◽  
Vol 136 (2) ◽  
Author(s):  
Joaquin Estevez-Delgado ◽  
Gabino Estevez-Delgado

2021 ◽  
Author(s):  
Rayane Reinholz Boone Corona ◽  
Cristina M. S. Sad ◽  
Mayara da Silva ◽  
Eustáquio V. R. de Castro ◽  
Erick F. Quintela ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document