On the Maximum Crossing Number

Author(s):  
Markus Chimani ◽  
Stefan Felsner ◽  
Stephen Kobourov ◽  
Torsten Ueckerdt ◽  
Pavel Valtr ◽  
...  
Keyword(s):  
10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


2020 ◽  
Vol 9 (8) ◽  
pp. 5901-5908
Author(s):  
M. Sagaya Nathan ◽  
J. Ravi Sankar
Keyword(s):  

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


Author(s):  
János Barát ◽  
Géza Tóth

AbstractThe crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any edge of G, its crossing number drops below k. There are examples of k-crossing-critical graphs that do not have drawings with exactly k crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then its crossing number is at most $$2.5\, k+16$$ 2.5 k + 16 . We improve this bound to $$2k+8\sqrt{k}+47$$ 2 k + 8 k + 47 .


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 525
Author(s):  
Javier Rodrigo ◽  
Susana Merchán ◽  
Danilo Magistrali ◽  
Mariló López

In this paper, we improve the lower bound on the minimum number of  ≤k-edges in sets of n points in general position in the plane when k is close to n2. As a consequence, we improve the current best lower bound of the rectilinear crossing number of the complete graph Kn for some values of n.


Author(s):  
Hwa Jeong Lee ◽  
Sungjong No ◽  
Seungsang Oh

Negami found an upper bound on the stick number [Formula: see text] of a nontrivial knot [Formula: see text] in terms of the minimal crossing number [Formula: see text]: [Formula: see text]. Huh and Oh found an improved upper bound: [Formula: see text]. Huh, No and Oh proved that [Formula: see text] for a [Formula: see text]-bridge knot or link [Formula: see text] with at least six crossings. As a sequel to this study, we present an upper bound on the stick number of Montesinos knots and links. Let [Formula: see text] be a knot or link which admits a reduced Montesinos diagram with [Formula: see text] crossings. If each rational tangle in the diagram has five or more index of the related Conway notation, then [Formula: see text]. Furthermore, if [Formula: see text] is alternating, then we can additionally reduce the upper bound by [Formula: see text].


2019 ◽  
Vol 35 (2) ◽  
pp. 137-146
Author(s):  
STEFAN BEREZNY ◽  
MICHAL STAS ◽  
◽  

The main purpose of this article is broaden known results concerning crossing numbers for join of graphs of order six. We give the crossing number of the join product G + Dn, where the graph G consists of one 5-cycle and of one isolated vertex, and Dn consists on n isolated vertices. The proof is done with the help of software that generates all cyclic permutations for a given number k, and creates a new graph COG for calculating the distances between all vertices of the graph. Finally, by adding some edges to the graph G, we are able to obtain the crossing numbers of the join product with the discrete graph Dn and with the path Pn on n vertices for other two graphs.


2011 ◽  
pp. 31-43 ◽  
Author(s):  
Kumud Bhandari ◽  
H. A. Dye ◽  
Louis H. Kauffman

2008 ◽  
Vol 17 (01) ◽  
pp. 13-23 ◽  
Author(s):  
BROOKE KENNEDY ◽  
THOMAS W. MATTMAN ◽  
ROBERTO RAYA ◽  
DAN TATING

Using Kauffman's model of flat knotted ribbons, we demonstrate how all regular polygons of at least seven sides can be realized by ribbon constructions of torus knots. We calculate length to width ratios for these constructions thereby bounding the Ribbonlength of the knots. In particular, we give evidence that the closed (respectively, truncation) Ribbonlength of a (q + 1,q) torus knot is (2q + 1) cot (π/(2q + 1)) (respectively, 2q cot (π/(2q + 1))). Using these calculations, we provide the bounds c1 ≤ 2/π and c2 ≥ 5/3 cot π/5 for the constants c1 and c2 that relate Ribbonlength R(K) and crossing number C(K) in a conjecture of Kusner: c1 C(K) ≤ R(K) ≤ c2 C(K).


Sign in / Sign up

Export Citation Format

Share Document