Predicate Automated Proof Systems Completeness of Classical Predicate Logic

2018 ◽  
pp. 441-487
Author(s):  
Anita Wasilewska
2004 ◽  
Vol 14 (4) ◽  
pp. 507-526 ◽  
Author(s):  
SARA NEGRI ◽  
JAN VON PLATO

A formulation of lattice theory as a system of rules added to sequent calculus is given. The analysis of proofs for the contraction-free calculus of classical predicate logic known as G3c extends to derivations with the mathematical rules of lattice theory. It is shown that minimal derivations of quantifier-free sequents enjoy a subterm property: all terms in such derivations are terms in the endsequent.An alternative formulation of lattice theory as a system of rules in natural deduction style is given, both with explicit meet and join constructions and as a relational theory with existence axioms. A subterm property for the latter extends the standard decidable classes of quantificational formulas of pure predicate calculus to lattice theory.


2014 ◽  
Vol 7 (3) ◽  
pp. 455-483 ◽  
Author(s):  
MAJID ALIZADEH ◽  
FARZANEH DERAKHSHAN ◽  
HIROAKIRA ONO

AbstractUniform interpolation property of a given logic is a stronger form of Craig’s interpolation property where both pre-interpolant and post-interpolant always exist uniformly for any provable implication in the logic. It is known that there exist logics, e.g., modal propositional logic S4, which have Craig’s interpolation property but do not have uniform interpolation property. The situation is even worse for predicate logics, as classical predicate logic does not have uniform interpolation property as pointed out by L. Henkin.In this paper, uniform interpolation property of basic substructural logics is studied by applying the proof-theoretic method introduced by A. Pitts (Pitts, 1992). It is shown that uniform interpolation property holds even for their predicate extensions, as long as they can be formalized by sequent calculi without contraction rules. For instance, uniform interpolation property of full Lambek predicate calculus, i.e., the substructural logic without any structural rule, and of both linear and affine predicate logics without exponentials are proved.


1966 ◽  
Vol 26 ◽  
pp. 195-203 ◽  
Author(s):  
Katuzi Ono

The universal character of the primitive logic LO in the sense that popular logics such as the lower classical predicate logic LK, the intuitionistic predicate logic LJ, Johansson’s minimal predicate logic LM, etc. can be faithfully interpreted in LO is very remarkable even from the view point of mechanical proof-checking. Since LO is very simple, deductions in LO could be mechanized in a simple form if a suitable formalism for LO is found out. Main purpose of this paper is to introduce a practical formalism for LO, practical in the sense that it is suitable at least for mechanical proof-checking business.


2003 ◽  
Vol 68 (4) ◽  
pp. 1403-1414 ◽  
Author(s):  
H. Kushida ◽  
M. Okada

AbstractIt is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints' result to the basic modal logic S4; we investigate the correspondence between the quantified versions of S4 (with and without the Barcan formula) and the classical predicate logic (with one-sorted variable). We present a purely proof-theoretic proof-transformation method, reducing an LK-proof of an interpreted formula to a modal proof.


Sign in / Sign up

Export Citation Format

Share Document