A proof-theoretic study of the correspondence of classical logic and modal logic

2003 ◽  
Vol 68 (4) ◽  
pp. 1403-1414 ◽  
Author(s):  
H. Kushida ◽  
M. Okada

AbstractIt is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints' result to the basic modal logic S4; we investigate the correspondence between the quantified versions of S4 (with and without the Barcan formula) and the classical predicate logic (with one-sorted variable). We present a purely proof-theoretic proof-transformation method, reducing an LK-proof of an interpreted formula to a modal proof.

2021 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We obtain an effective embedding of the classical predicate logic into the logic of partial quasiary predicates. The embedding has the property that an image of a non-theorem of the classical logic is refutable in a model of the logic of partial quasiary predicates that has the same cardinality as the classical countermodel of the non-theorem. Therefore, we also obtain an embedding of the classical predicate logic of finite models into the logic of partial quasiary predicates over finite structures. As a consequence, we prove that the logic of partial quasiary predicates is undecidable—more precisely, $\varSigma ^0_1$-complete—over arbitrary structures and not recursively enumerable—more precisely, $\varPi ^0_1$-complete—over finite structures.


2021 ◽  
pp. 65-100
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

Natural deduction is a philosophically as well as pedagogically important logical proof system. This chapter introduces Gerhard Gentzen’s original system of natural deduction for minimal, intuitionistic, and classical predicate logic. Natural deduction reflects the ways we reason under assumption in mathematics and ordinary life. Its rules display a pleasing symmetry, in that connectives and quantifiers are each governed by a pair of introduction and elimination rules. After providing several examples of how to find proofs in natural deduction, it is shown how deductions in such systems can be manipulated and measured according to various notions of complexity, such as size and height. The final section shows that the axiomatic system of classical logic presented in Chapter 2 and the system of natural deduction for classical logic introduced in this chapter are equivalent.


1993 ◽  
Vol 58 (3) ◽  
pp. 800-823 ◽  
Author(s):  
D. M. Gabbay ◽  
V. B. Shehtman

The interest in fragments of predicate logics is motivated by the well-known fact that full classical predicate calculus is undecidable (cf. Church [1936]). So it is desirable to find decidable fragments which are in some sense “maximal”, i.e., which become undecidable if they are “slightly” extended. Or, alternatively, we can look for “minimal” undecidable fragments and try to identify the vague boundary between decidability and undecidability. A great deal of work in this area concerning mainly classical logic has been done since the thirties. We will not give a complete review of decidability and undecidability results in classical logic, referring the reader to existing monographs (cf. Suranyi [1959], Lewis [1979], and Dreben, Goldfarb [1979]). A short summary can also be found in the well-known book Church [1956]. Let us recall only several facts. Herein we will consider only logics without functional symbols, constants, and equality.(C1) The fragment of the classical logic with only monadic predicate letters is decidable (cf. Behmann [1922]).(C2) The fragment of the classical logic with a single binary predicate letter is undecidable. (This is a consequence of Gödel [1933].)(C3) The fragment of the classical logic with a single individual variable is decidable; in fact it is equivalent to Lewis S5 (cf. Wajsberg [1933]).(C4) The fragment of the classical logic with two individual variables is decidable (Segerberg [1973] contains a proof using modal logic; Scott [1962] and Mortimer [1975] give traditional proofs.)(C5) The fragment of the classical logic with three individual variables and binary predicate letters is undecidable (cf. Surańyi [1943]). In fact this paper considers formulas of the following typeφ,ψ being quantifier-free and the set of binary predicate letters which can appear in φ or ψ being fixed and finite.


2005 ◽  
Vol 3 ◽  
Author(s):  
Greg Restall

his paper provides a sound and complete axiomatisation for constant domain modal logics without Boolean negation. This is a simpler case of the difficult problem of providing a sound and complete axiomatisation for constant-domain quantified relevant logics, which can be seen as a kind of modal logic with a two-place modal operator, the relevant conditional. The completeness proof is adapted from a proof for classical modal predicate logic (I follow James Garson’s 1984 presentation of the completeness proof quite closely), but with an important twist, to do with the absence of Boolean negation.


1974 ◽  
Vol 39 (3) ◽  
pp. 496-508 ◽  
Author(s):  
Michael Mortimer

This paper is concerned with extending some basic results from classical model theory to modal logic.In §1, we define the majority of terms used in the paper, and explain our notation. A full catalogue would be excessive, and we cite [3] and [7] as general references.Many papers on modal logic that have appeared are concerned with (i) introducing a new modal logic, and (ii) proving a weak completeness theorem for it. Theorem 1, in §2, in many cases allows us to conclude immediately that a strong completeness theorem holds for such a logic in languages of arbitrary cardinality. In particular, this is true of S4 with the Barcan formula.In §3 we strengthen Theorem 1 for a number of modal logics to deal with the satisfaction of several sets of sentences, and so obtain a realizing types theorem. Finally, an omitting types theorem, generalizing the result for classical logic (see [5]) is proved in §4.Several consequences of Theorem 1 are already to be found in the literature. [2] gives a proof of strong completeness in languages of arbitrary cardinality of various logics without the Barcan formula, and [8] for some logics in countable languages with it. In the latter case, the result for uncountable languages is cited, without proof, in [1], and there credited to Montague. Our proof was found independently.


1938 ◽  
Vol 3 (2) ◽  
pp. 77-82 ◽  
Author(s):  
C. West Churchman

In Oskar Becker's Zur Logik der Modalitäten four systems of modal logic are considered. Two of these are mentioned in Appendix II of Lewis and Langford's Symbolic logic. The first system is based on A1–8 plus the postulate,From A7: ∼◊p⊰∼p we can prove the converse of C11 by writing ∼◊p for p, and hence deriveThe addition of this postulate to A1–8, as Becker points out, allows us to “reduce” all complex modal functions to six, and these six are precisely those which Lewis mentions in his postulates and theorems: p, ∼p, ◊p, ∼◊p, ∼◊∼p, and ◊∼p This reduction is accomplished by showingwhere ◊n means that the modal operator ◊ is repeated n times; e.g., ◊3p = ◊◊◊p. Then it is shown thatBy means of (1), (2), and (3) any complex modal function whatsoever may be reduced to one of the six “simple” modals mentioned above.It might be asked whether this reduction could be carried out still further, i.e., whether two of the six “irreducible” modals could not be equated. But such a reduction would have to be based on the fact that ◊p = p which is inconsistent with the set B1–9 of Lewis and Langford's Symbolic logic and independent of the set A1–8. Hence for neither set would such a reduction be possible.


2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Marilynn Johnson

In An Introduction to Non-Classical Logic: From If to Is Graham Priest (2008) presents branching rules in Free Logic, Variable Domain Modal Logic, and Intuitionist Logic. I propose a simpler, non-branching rule to replace Priest’s rule for universal instantiation in Free Logic, a second, slightly modified version of this rule to replace Priest’s rule for universal instantiation in Variable Domain Modal Logic, and third and fourth rules, further modifying the second rule, to replace Priest’s branching universal and particular instantiation rules in Intuitionist Logic. In each of these logics the proposed rule leads to tableaux with fewer branches. In Intuitionist logic, the proposed rules allow for the resolution of a particular problem Priest grapples with throughout the chapter. In this paper, I demonstrate that the proposed rules can greatly simplify tableaux and argue that they should be used in place of the rules given by Priest.


2014 ◽  
Vol 7 (3) ◽  
pp. 455-483 ◽  
Author(s):  
MAJID ALIZADEH ◽  
FARZANEH DERAKHSHAN ◽  
HIROAKIRA ONO

AbstractUniform interpolation property of a given logic is a stronger form of Craig’s interpolation property where both pre-interpolant and post-interpolant always exist uniformly for any provable implication in the logic. It is known that there exist logics, e.g., modal propositional logic S4, which have Craig’s interpolation property but do not have uniform interpolation property. The situation is even worse for predicate logics, as classical predicate logic does not have uniform interpolation property as pointed out by L. Henkin.In this paper, uniform interpolation property of basic substructural logics is studied by applying the proof-theoretic method introduced by A. Pitts (Pitts, 1992). It is shown that uniform interpolation property holds even for their predicate extensions, as long as they can be formalized by sequent calculi without contraction rules. For instance, uniform interpolation property of full Lambek predicate calculus, i.e., the substructural logic without any structural rule, and of both linear and affine predicate logics without exponentials are proved.


Sign in / Sign up

Export Citation Format

Share Document