Čech Complexes, Čech Homology and Cohomology

Author(s):  
Peter Schenzel ◽  
Anne-Marie Simon
Keyword(s):  
1981 ◽  
Vol 103 (3) ◽  
pp. 411 ◽  
Author(s):  
Robert J. Daverman ◽  
John J. Walsh

2019 ◽  
Vol 26 (2) ◽  
pp. 295-301
Author(s):  
Leonard Mdzinarishvili

Abstract Let {\mathcal{K}} be an abelian category that has enough injective objects, let {T\colon\mathcal{K}\to A} be any left exact covariant additive functor to an abelian category A and let {T^{(i)}} be a right derived functor, {u\geq 1} , [S. Mardešić, Strong Shape and Homology, Springer Monogr. Math., Springer, Berlin, 2000]. If {T^{(i)}=0} for {i\geq 2} and {T^{(i)}C_{n}=0} for all {n\in\mathbb{Z}} , then there is an exact sequence 0\longrightarrow T^{(1)}H_{n+1}(C_{*})\longrightarrow H_{n}(TC_{*})% \longrightarrow TH_{n}(C_{*})\longrightarrow 0, where {C_{*}=\{C_{n}\}} is a chain complex in the category {\mathcal{K}} , {H_{n}(C_{*})} is the homology of the chain complex {C_{*}} , {TC_{*}} is a chain complex in the category A, and {H_{n}(TC_{*})} is the homology of the chain complex {TC_{*}} . This exact sequence is the well known Künneth’s correlation. In the present paper Künneth’s correlation is generalized. Namely, the conditions are found under which the infinite exact sequence \displaystyle\cdots\longrightarrow T^{(2i+1)}H_{n+i+1}\longrightarrow\cdots% \longrightarrow T^{(3)}H_{n+2}\longrightarrow T^{(1)}H_{n+1}\longrightarrow H_% {n}(TC_{*}) \displaystyle\longrightarrow TH_{n}(C_{*})\longrightarrow T^{(2)}H_{n+1}% \longrightarrow T^{(4)}H_{n+2}\longrightarrow\cdots\longrightarrow T^{(2i)}H_{% n+i}\longrightarrow\cdots holds, where {T^{(2i+1)}H_{n+i+1}=T^{(2i+1)}H_{n+i+1}(C_{*})} , {T^{(2i)}H_{n+i}=T^{(2i)}H_{n+i}(C_{*})} . The formula makes it possible to generalize Milnor’s formula for the cohomologies of an arbitrary complex, relatively to the Kolmogorov homology to the Alexandroff–Čech homology for a compact space, to a generative result of Massey for a local compact Hausdorff space X and a direct system {\{U\}} of open subsets U of X such that {\overline{U}} is a compact subset of X.


2020 ◽  
Vol 32 (1) ◽  
pp. 235-267 ◽  
Author(s):  
Michal Hrbek ◽  
Jan Šťovíček

AbstractWe classify all tilting classes over an arbitrary commutative ring via certain sequences of Thomason subsets of the spectrum, generalizing the classification for noetherian commutative rings by Angeleri, Pospíšil, ŠÅ¥ovíček and Trlifaj (2014). We show that the n-tilting classes can equivalently be expressed as classes of all modules vanishing in the first n degrees of one of the following homology theories arising from a finitely generated ideal: {\operatorname{Tor}_{*}(R/I,-)}, Koszul homology, Čech homology, or local homology (even though in general none of those theories coincide). Cofinite-type n-cotilting classes are described by vanishing of the corresponding cohomology theories. For any cotilting class of cofinite type, we also construct a corresponding cotilting module, generalizing the construction of Šťovíček, Trlifaj and Herbera (2014). Finally, we characterize cotilting classes of cofinite type amongst the general ones, and construct new examples of n-cotilting classes not of cofinite type, which are in a sense hard to tell apart from those of cofinite type.


Sign in / Sign up

Export Citation Format

Share Document