abelian category
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 27)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
pp. 1-38
Author(s):  
Mindy Huerta ◽  
Octavio Mendoza ◽  
Marco A. Pérez

Abstract We present the concept of cotorsion pairs cut along subcategories of an abelian category. This provides a generalization of complete cotorsion pairs, and represents a general framework to find approximations restricted to certain subcategories. We also exhibit some connections between cut cotorsion pairs and Auslander–Buchweitz approximation theory, by considering relative analogs for Frobenius pairs and Auslander–Buchweitz contexts. Several applications are given in the settings of relative Gorenstein homological algebra, chain complexes, and quasi-coherent sheaves, as well as to characterize some important results on the Finitistic Dimension Conjecture, the existence of right adjoints of quotient functors by Serre subcategories, and the description of cotorsion pairs in triangulated categories as co-t-structures.


2021 ◽  
Vol 27 (4) ◽  
pp. 55-70
Author(s):  
P. K. Sharma ◽  
◽  
Chandni ◽  

The category theory deals with mathematical structures and relationships between them. Categories now appear in most branches of mathematics and in some areas of theoretical computer science and mathematical physics, and acting as a unifying notion. In this paper, we study the relationship between the category of groups and the category of intuitionistic fuzzy groups. We prove that the category of groups is a subcategory of category of intuitionistic fuzzy groups and that it is not an Abelian category. We establish a function β : Hom(A, B) → [0; 1] × [0; 1] on the set of all intuitionistic fuzzy homomorphisms between intuitionistic fuzzy groups A and B of groups G and H, respectively. We prove that β is a covariant functor from the category of groups to the category of intuitionistic fuzzy groups. Further, we show that the category of intuitionistic fuzzy groups is a top category by establishing a contravariant functor from the category of intuitionistic fuzzy groups to the lattices of all intuitionistic fuzzy groups.


Author(s):  
Taiki Shibata ◽  
Kenichi Shimizu

AbstractWe organize the modified trace theory with the use of the Nakayama functor of finite abelian categories. For a linear right exact functor Σ on a finite abelian category ${\mathscr{M}}$ M , we introduce the notion of a Σ-twisted trace on the class $\text {Proj}({\mathscr{M}})$ Proj ( M ) of projective objects of ${\mathscr{M}}$ M . In our framework, there is a one-to-one correspondence between the set of Σ-twisted traces on $\text {Proj}({\mathscr{M}})$ Proj ( M ) and the set of natural transformations from Σ to the Nakayama functor of ${\mathscr{M}}$ M . Non-degeneracy and compatibility with the module structure (when ${\mathscr{M}}$ M is a module category over a finite tensor category) of a Σ-twisted trace can be written down in terms of the corresponding natural transformation. As an application of this principal, we give existence and uniqueness criteria for modified traces. In particular, a unimodular pivotal finite tensor category admits a non-zero two-sided modified trace if and only if it is spherical. Also, a ribbon finite tensor category admits such a trace if and only if it is unimodular.


Author(s):  
Wan Wu ◽  
Zenghui Gao

We introduce and study strongly Gorenstein subcategory [Formula: see text], relative to an additive full subcategory [Formula: see text] of an abelian category [Formula: see text]. When [Formula: see text] is self-orthogonal, we give some sufficient conditions under which the property of an object in [Formula: see text] can be inherited by its subobjects and quotient objects. Then, we introduce the notions of one-sided (strongly) Gorenstein subcategories. Under the assumption that [Formula: see text] is closed under countable direct sums (respectively, direct products), we prove that an object is in right (respectively, left) Gorenstein category [Formula: see text] (respectively, [Formula: see text]) if and only if it is a direct summand of an object in right (respectively, left) strongly Gorenstein subcategory [Formula: see text] (respectively, [Formula: see text]). As applications, some known results are obtained as corollaries.


Author(s):  
Víctor Becerril

Let [Formula: see text] be an abelian category. In this paper, we investigate the global [Formula: see text]-Gorenstein projective dimension [Formula: see text], associated to a GP-admissible pair [Formula: see text]. We give homological conditions over [Formula: see text] that characterize it. Moreover, given a GI-admissible pair [Formula: see text], we study conditions under which [Formula: see text] and [Formula: see text] are the same.


Author(s):  
X. García-Martínez ◽  
M. Tsishyn ◽  
T. Van der Linden ◽  
C. Vienne

Abstract Just like group actions are represented by group automorphisms, Lie algebra actions are represented by derivations: up to isomorphism, a split extension of a Lie algebra $B$ by a Lie algebra $X$ corresponds to a Lie algebra morphism $B\to {\mathit {Der}}(X)$ from $B$ to the Lie algebra ${\mathit {Der}}(X)$ of derivations on $X$ . In this article, we study the question whether the concept of a derivation can be extended to other types of non-associative algebras over a field ${\mathbb {K}}$ , in such a way that these generalized derivations characterize the ${\mathbb {K}}$ -algebra actions. We prove that the answer is no, as soon as the field ${\mathbb {K}}$ is infinite. In fact, we prove a stronger result: already the representability of all abelian actions – which are usually called representations or Beck modules – suffices for this to be true. Thus, we characterize the variety of Lie algebras over an infinite field of characteristic different from $2$ as the only variety of non-associative algebras which is a non-abelian category with representable representations. This emphasizes the unique role played by the Lie algebra of linear endomorphisms $\mathfrak {gl}(V)$ as a representing object for the representations on a vector space $V$ .


Author(s):  
Federico Binda ◽  
Alberto Merici
Keyword(s):  

Abstract The goal of this article is to extend the work of Voevodsky and Morel on the homotopy t-structure on the category of motivic complexes to the context of motives for logarithmic schemes. To do so, we prove an analogue of Morel’s connectivity theorem and show a purity statement for $({\mathbf {P}}^1, \infty )$ -local complexes of sheaves with log transfers. The homotopy t-structure on ${\operatorname {\mathbf {logDM}^{eff}}}(k)$ is proved to be compatible with Voevodsky’s t-structure; that is, we show that the comparison functor $R^{{\overline {\square }}}\omega ^*\colon {\operatorname {\mathbf {DM}^{eff}}}(k)\to {\operatorname {\mathbf {logDM}^{eff}}}(k)$ is t-exact. The heart of the homotopy t-structure on ${\operatorname {\mathbf {logDM}^{eff}}}(k)$ is the Grothendieck abelian category of strictly cube-invariant sheaves with log transfers: we use it to build a new version of the category of reciprocity sheaves in the style of Kahn-Saito-Yamazaki and Rülling.


2021 ◽  
Vol 157 (3) ◽  
pp. 573-624
Author(s):  
Tatsuki Kuwagaki

We introduce irregular constructible sheaves, which are ${\mathbb {C}}$-constructible with coefficients in a finite version of the Novikov ring $\Lambda$ and special gradings. We show that the bounded derived category of cohomologically irregular constructible complexes is equivalent to the bounded derived category of holonomic ${\mathcal {D}}$-modules by a modification of D’Agnolo and Kashiwara's irregular Riemann–Hilbert correspondence. The bounded derived category of cohomologically irregular constructible complexes is equipped with the irregular perverse $t$-structure, which is a straightforward generalization of usual perverse $t$-structure, and we prove that its heart is equivalent to the abelian category of holonomic ${\mathcal {D}}$-modules. We also develop the algebraic version of the theory.


2021 ◽  
Vol 28 (01) ◽  
pp. 131-142
Author(s):  
Weiling Song ◽  
Tiwei Zhao ◽  
Zhaoyong Huang

Let [Formula: see text] be an abelian category, [Formula: see text] an additive, full and self-orthogonal subcategory of [Formula: see text] closed under direct summands, [Formula: see text] the right Gorenstein subcategory of [Formula: see text] relative to [Formula: see text], and [Formula: see text] the left orthogonal class of [Formula: see text]. For an object [Formula: see text] in [Formula: see text], we prove that if [Formula: see text] is in the right 1-orthogonal class of [Formula: see text], then the [Formula: see text]-projective and [Formula: see text]-projective dimensions of [Formula: see text] are identical; if the [Formula: see text]-projective dimension of [Formula: see text] is finite, then the [Formula: see text]-projective and [Formula: see text]-projective dimensions of [Formula: see text] are identical. We also prove that the supremum of the [Formula: see text]-projective dimensions of objects with finite [Formula: see text]-projective dimension and that of the [Formula: see text]-projective dimensions of objects with finite [Formula: see text]-projective dimension coincide. Then we apply these results to the category of modules.


Author(s):  
Samira Hashemi ◽  
Feysal Hassani ◽  
Rasul Rasuli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document