Three-Dimensional Manifolds of Constant Energy and Invariants of Integrable Hamiltonian Systems

Author(s):  
Anatoly T. Fomenko ◽  
Kirill I. Solodskih
2001 ◽  
Vol 01 (01) ◽  
pp. 1-21 ◽  
Author(s):  
YURI KIFER

In systems which combine slow and fast motions the averaging principle says that a good approximation of the slow motion can be obtained by averaging its parameters in fast variables. This setup arises, for instance, in perturbations of Hamiltonian systems where motions on constant energy manifolds are fast and across them are slow. When these perturbations are deterministic Anosov's theorem says that the averaging principle works except for a small in measure set of initial conditions while Neistadt's theorem gives error estimates in the case of perturbations of integrable Hamiltonian systems. These results are extended here to the case of fast and slow motions given by stochastic differential equations.


1982 ◽  
Vol 120 ◽  
pp. 155-183 ◽  
Author(s):  
Jon Lee

We have investigated a sequence of dynamical systems corresponding to spherical truncations of the incompressible three-dimensional Navier-Stokes equations in Fourier space. For lower-order truncated systems up to the spherical truncation of wavenumber radius 4, it is concluded that the inviscid Navier-Stokes system will develop mixing (and a fortiori ergodicity) on the constant energy-helicity surface, and also isotropy of the covariance spectral tensor. This conclusion is, however, drawn not directly from the mixing definition but from the observation that one cannot evolve the trajectory numerically much beyond several characteristic corre- lation times of the smallest eddy owing to the accumulation of round-off errors. The limited evolution time is a manifestation of trajectory instability (exponential orbit separation) which underlies not only mixing, but also the stronger dynamical charac- terization of positive Kolmogorov entropy (K-system).


Sign in / Sign up

Export Citation Format

Share Document