Parallel Computer Architectures for Numerical Simulation

Author(s):  
A. Bode
Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


Author(s):  
N. Langloh ◽  
V. Christopoulos ◽  
S. Van Langendonck ◽  
J. Cornelis ◽  
R. Vounckx ◽  
...  

2001 ◽  
Vol 446 ◽  
pp. 199-228 ◽  
Author(s):  
XIAOHUA WU ◽  
PAUL A. DURBIN

Two types of longitudinal vortices are found to arise from distorted, migrating wakes convecting through a low-pressure turbine stator passage. The primary vortices emerge within the free stream as the wake is subjected to irrotational strains. Their axes align approximately with the local mean wake velocity. They are dragged over the surface and induce secondary vortices near the wall, which have the opposite sense of rotation to the primary vortices. Although they form on the concave side, these secondary vortices are neither produced, nor sustained by Görtler instability; rather, they are a consequence of severely straining the passing wakes.Evidence is drawn from a numerical simulation of the unsteady, incompressible flow through a turbine stator passage with and without upstream turbulent wakes. The computations were performed with 2.5 and 5.7 × 107 grid points on a parallel computer.


Sign in / Sign up

Export Citation Format

Share Document