Systematic Integration of Parameterized Local Search Techniques in Evolutionary Algorithms

Author(s):  
Neal K. Bambha ◽  
Shuvra S. Bhattacharyya ◽  
Jürgen Teich ◽  
Eckart Zitzler
2018 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Malichan Thongkham ◽  
Sasitorn Kaewman

This article presents algorithms for solving a special case of the vehicle routing problem (VRP). We define our proposed problem of a special VRP case as a combination of two hard problems: the generalized assignment and the vehicle routing problem. The different evolution (DE) algorithm is used to solve the problem. The recombination process of the original DE is modified by adding two more sets of vectors—best vector and random vector—and using two other sets—target vector and trial vector. The linear probability formula is proposed to potentially use one out of the four sets of vectors. This is called the modified DE (MDE) algorithm. Two local searches are integrated into the MDE algorithm: exchange and insert. These procedures create a DE and MDE that use (1) no local search techniques, (2) two local search techniques, (3) only the exchange procedure, and (4) only the insert procedure. This generates four DE algorithms and four MDE algorithms. The proposed methods are tested with 15 tested instances and one case study. The current procedure is compared with all proposed heuristics. The computational result shows that, in the case study, the best DE algorithm (DE-4) has a 1.6% better solution than that of the current practice, whereas the MDE algorithm is 8.2% better. The MDE algorithm that uses the same local search as the DE algorithms generates a maximum 5.814% better solution than that of the DE algorithms.


2018 ◽  
Vol 52 (2) ◽  
pp. 577-594
Author(s):  
Keisuke Murakami

The covering tour problem (CTP) is defined on a graph, where there exist two types of vertices. One is called visited vertex, which can be visited. The other is called covered vertex, which must be covered but cannot be visited. Each visited vertex covers a subset of covered vertices, and the costs of edges between visited vertices are given. The objective of the CTP is to obtain a minimum cost tour on a subset of visited vertices while covering all covered vertices. In this paper, we deal with the large-scale CTPs, which are composed of tens of thousands of vertices; in the previous studies, the scales of the instances in the experiments are at most a few hundred vertices. We propose a heuristic algorithm using local search techniques for the large-scale CTP. With computational experiments, we show that our algorithm outperforms the existing methods.


Constraints ◽  
2007 ◽  
Vol 12 (3) ◽  
pp. 345-369 ◽  
Author(s):  
Lengning Liu ◽  
Mirosław Truszczyński

Sign in / Sign up

Export Citation Format

Share Document