minimum spanning tree problem
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 37)

H-INDEX

30
(FIVE YEARS 3)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 106
Author(s):  
Saibal Majumder ◽  
Partha Sarathi Barma ◽  
Arindam Biswas ◽  
Pradip Banerjee ◽  
Bijoy Kumar Mandal ◽  
...  

Minimum spanning tree problem (MSTP) has allured many researchers and practitioners due to its varied range of applications in real world scenarios. Modelling these applications involves the incorporation of indeterminate phenomena based on their subjective estimations. Such phenomena can be represented rationally using uncertainty theory. Being a more realistic variant of MSTP, in this article, based on the principles of the uncertainty theory, we have studied a multi-objective minimum spanning tree problem (MMSTP) with indeterminate problem parameters. Subsequently, two uncertain programming models of the proposed uncertain multi-objective minimum spanning tree problem (UMMSTP) are developed and their corresponding crisp equivalence models are investigated, and eventually solved using a classical multi-objective solution technique, the epsilon-constraint method. Additionally, two multi-objective evolutionary algorithms (MOEAs), non-dominated sorting genetic algorithm II (NSGAII) and duplicate elimination non-dominated sorting evolutionary algorithm (DENSEA) are also employed as solution methodologies. With the help of the proposed UMMSTP models, the practical problem of optimizing the distribution of petroleum products was solved, consisting in the search for symmetry (balance) between the transportation cost and the transportation time. Thereafter, the performance of the MOEAs is analyzed on five randomly developed instances of the proposed problem.


2021 ◽  
Vol 28 (1) ◽  
pp. 22-37
Author(s):  
Alexander Valeryevich Smirnov

In this paper, we study undirected multiple graphs of any natural multiplicity k > 1. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of k linked edges, which connect 2 or (k + 1) vertices correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of k linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. A multiple tree is a connected multiple graph with no cycles. Unlike ordinary trees, the number of edges in a multiple tree is not fixed. The problem of finding the spanning tree can be set for a multiple graph. Complete spanning trees form a special class of spanning trees of a multiple graph. Their peculiarity is that a multiple path joining any two selected vertices exists in the tree if and only if such a path exists in the initial graph. If the multiple graph is weighted, the minimum spanning tree problem and the minimum complete spanning tree problem can be set. Also we can formulate the problems of recognition of the spanning tree and complete spanning tree of the limited weight. The main result of this article is the proof of NPcompleteness of such recognition problems for arbitrary multiple graphs as well as for divisible multiple graphs in the case when multiplicity k ≥ 3. The corresponding optimization problems are NP-hard.


Sign in / Sign up

Export Citation Format

Share Document