Null Space Approach of Fisher Discriminant Analysis for Face Recognition

Author(s):  
Wei Liu ◽  
Yunhong Wang ◽  
Stan Z. Li ◽  
Tieniu Tan
Author(s):  
HONG HUANG ◽  
JIAMIN LIU ◽  
HAILIANG FENG

An improved manifold learning method, called Uncorrelated Local Fisher Discriminant Analysis (ULFDA), for face recognition is proposed. Motivated by the fact that statistically uncorrelated features are desirable for dimension reduction, we propose a new difference-based optimization objective function to seek a feature submanifold such that the within-manifold scatter is minimized, and between-manifold scatter is maximized simultaneously in the embedding space. We impose an appropriate constraint to make the extracted features statistically uncorrelated. The uncorrelated discriminant method has an analytic global optimal solution, and it can be computed based on eigen decomposition. As a result, the proposed algorithm not only derives the optimal and lossless discriminative information, but also guarantees that all extracted features are statistically uncorrelated. Experiments on synthetic data and AT&T, extended YaleB and CMU PIE face databases are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yue Liu ◽  
Yibing Li ◽  
Hong Xie ◽  
Dandan Liu

Kernel Fisher discriminant analysis (KFDA) method has demonstrated its success in extracting facial features for face recognition. Compared to linear techniques, it can better describe the complex and nonlinear variations of face images. However, a single kernel is not always suitable for the applications of face recognition which contain data from multiple, heterogeneous sources, such as face images under huge variations of pose, illumination, and facial expression. To improve the performance of KFDA in face recognition, a novel algorithm named multiple data-dependent kernel Fisher discriminant analysis (MDKFDA) is proposed in this paper. The constructed multiple data-dependent kernel (MDK) is a combination of several base kernels with a data-dependent kernel constraint on their weights. By solving the optimization equation based on Fisher criterion and maximizing the margin criterion, the parameter optimization of data-dependent kernel and multiple base kernels is achieved. Experimental results on the three face databases validate the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document