novel algorithm
Recently Published Documents


TOTAL DOCUMENTS

2649
(FIVE YEARS 605)

H-INDEX

53
(FIVE YEARS 9)

Author(s):  
Kaneeka Vidanage ◽  
Noor Maizura Mohamad Noor ◽  
Rosmayati Mohemad ◽  
Zuriana Abu Bakar

Ontologies are domain-specific conceptualizations that are both human and machine-readable. Due to this remarkable attribute of ontologies, its applications are not limited to computing domains. Banking, medicine, agriculture, and law are a few of the non-computing domains, where ontologies are being used very effectively. When creating ontologies for non-computing domains, involvement of the non-computing domain specialists like bankers, lawyers, farmers become very vital. Hence, they are not semantic specialists, particularly designed visualization assistance is required for the ontology schema verifications and sense-making. Existing visualization methods are not fine-tuned for non-technical domain specialists and there are lots of complexities. In this research, a novel algorithm capable of generating domain specialists’ friendlier visualization canvas has been explored. This proposed algorithm and the visualization canvas has been tested for three different domains and overall success of 85% has been yielded.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 234
Author(s):  
Evgenia Novikova ◽  
Elena Doynikova ◽  
Diana Gaifulina ◽  
Igor Kotenko

Trustworthiness metrics help users to understand information system’s or a device’s security, safety, privacy, resilience, and reliability level. These metrics have different types and natures. The challenge consists of the integration of these metrics into one clear, scalable, sensitive, and reasonable metric representing overall trustworthiness level, useful for understanding if the users can trust the system or for the comparison of the devices and information systems. In this research, the authors propose a novel algorithm for calculation of an integral trustworthiness risk score that is scalable to any number of metrics, considers their criticality, and does not perform averaging in a case when all metrics are of equal importance. The obtained trustworthiness risk score could be further transformed to trustworthiness level. The authors analyze the resulting integral metric sensitivity and demonstrate its advantages on the series of experiments.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Ruohao Zhang ◽  
Jean-Philippe Condomines ◽  
Emmanuel Lochin

The rapid development of Internet of Things (IoT) technology, together with mobile network technology, has created a never-before-seen world of interconnection, evoking research on how to make it vaster, faster, and safer. To support the ongoing fight against the malicious misuse of networks, in this paper we propose a novel algorithm called AMDES (unmanned aerial system multifractal analysis intrusion detection system) for spoofing attack detection. This novel algorithm is based on both wavelet leader multifractal analysis (WLM) and machine learning (ML) principles. In earlier research on unmanned aerial systems (UAS), intrusion detection systems (IDS) based on multifractal (MF) spectral analysis have been used to provide accurate MF spectrum estimations of network traffic. Such an estimation is then used to detect and characterize flooding anomalies that can be observed in an unmanned aerial vehicle (UAV) network. However, the previous contributions have lacked the consideration of other types of network intrusions commonly observed in UAS networks, such as the man in the middle attack (MITM). In this work, this promising methodology has been accommodated to detect a spoofing attack within a UAS. This methodology highlights a robust approach in terms of false positive performance in detecting intrusions in a UAS location reporting system.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 516
Author(s):  
Alessandro Rizzo ◽  
Francesco Cardellini ◽  
Claudio Poggi ◽  
Enrico Borra ◽  
Luca Ciciani ◽  
...  

Nowadays, radon gas exposure is considered one of the main health concerns for the population because, by carrying about half the total dose due to environmental radioactivity, it is the second cause of lung cancer after smoking. Due to a relatively long half-life of 3.82 days, the chemical inertia and since its parent Ra-226 is largely diffuse on the earthrgb]0,0,1’s crust and especially in the building materials, radon can diffuse and potentially saturate human habitats, with a concentration that can suddenly change during the 24 h day depending on temperature, pressure, and relative humidity. For such reasons, `real-time’ measurements performed by an active detector, possibly of small dimensions and a handy configuration, can play an important role in evaluating the risk and taking the appropriate countermeasures to mitigate it. In this work, a novel algorithm for pattern recognition was developed to exploit the potentialities of silicon active detectors with a pixel matrix structure to measure radon through the α emission, in a simple measurement configuration, where the device is placed directly in air with no holder, no collection filter or electrostatic field to drift the radon progenies towards the detector active area. This particular measurement configuration (dubbed as bare) requires an α/β-discrimination method that is not based on spectroscopic analysis: as the gas surrounds the detector the α particles are emitted at different distances from it, so they lose variable energy amount in air depending on the traveled path-length which implies a variable deposited energy in the active area. The pixels matrix structure allows overcoming this issue because the interaction of α, β and γ particles generate in the active area of the detector clusters (group of pixels where a signal is read) of different shape and energy dispersion. The novel algorithm that exploits such a phenomenon was developed using a pixelated silicon detector of the TimePix family with a compact design. An α(Am-241) and a β(Sr-90) source were used to calibrate the algorithm and to evaluate its performances in terms of β rejection capability and α recognition efficiency. Successively, the detector was exposed to different radon concentrations at the ENEA-INMRI radon facility in `bare’ configuration, in order to check the linearity of the device response over a radon concentration range. The results for this technique are presented and discussed, highlighting the potential applications especially the possibility to exploit small and handy detectors to perform radon active measurements in the simplest configuration.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Eric D. Brooks ◽  
Xiaochun Wang ◽  
Brian De ◽  
Vivek Verma ◽  
Tyler D. Williamson ◽  
...  

Abstract Background Re-irradiation (re-RT) is a technically challenging task for which few standardized approaches exist. This is in part due to the lack of a common platform to assess dose tolerance in relation to toxicity in the re-RT setting. To better address this knowledge gap and provide new tools for studying and developing thresholds for re-RT, we developed a novel algorithm that allows for anatomically accurate three-dimensional mapping of composite biological effective dose (BED) distributions from nominal doses (Gy). Methods The algorithm was designed to automatically convert nominal dose from prior treatment plans to corresponding BED value maps (voxel size 2.5 mm3 and α/β of 3 for normal tissue, BED3). Following the conversion of each plan to a BED3 dose distribution, deformable registration was used to create a summed composite re-irradiation BED3 plan for each patient who received two treatments. A proof-of-principle analysis was performed on 38 re-irradiation cases of initial stereotactic ablative radiotherapy (SABR) followed by either re-SABR or chemoradiation for isolated locoregional recurrence of early-stage non-small cell lung cancer. Results Evaluation of the algorithm-generated maps revealed appropriate conversion of physical dose to BED at each voxel. Of 14 patients receiving repeat SABR, there was one case each of grade 3 chest wall pain (7%), pneumonitis (7%), and dyspnea (7%). Of 24 patients undergoing repeat fractionated radiotherapy, grade 3 events were limited to two cases each of pneumonitis and dyspnea (8%). Composite BED3 dosimetry for each patient who experienced grade 2–3 events is provided and may help guide development of precise cumulative dose thresholds for organs at risk in the re-RT setting. Conclusions This novel algorithm successfully created a voxel-by-voxel composite treatment plan using BED values. This approach may be used to more precisely examine dosimetric predictors of toxicities and to establish more accurate normal tissue constraints for re-irradiation.


2022 ◽  
Author(s):  
Sagnik Banerjee ◽  
Carson Andorf

Advancement in technology has enabled sequencing machines to produce vast amounts of genetic data, causing an increase in storage demands. Most genomic software utilizes read alignments for several purposes including transcriptome assembly and gene count estimation. Herein we present, ABRIDGE, a state-of-the-art compressor for SAM alignment files offering users both lossless and lossy compression options. This reference-based file compressor achieves the best compression ratio among all compression software ensuring lower space demand and faster file transmission. Central to the software is a novel algorithm that retains non-redundant information. This new approach has allowed ABRIDGE to achieve a compression 16% higher than the second-best compressor for RNA-Seq reads and over 35% for DNA-Seq reads. ABRIDGE also offers users the option to randomly access location without having to decompress the entire file. ABRIDGE is distributed under MIT license and can be obtained from GitHub and docker hub. We anticipate that the user community will adopt ABRIDGE within their existing pipeline encouraging further research in this domain.


Several researchers studied the impact of collaboration between the learners, but few studies have been carried out on the impact of collaboration between teachers. In the previous work, the authors have studied the impact of the collaboration among the learners with a specific collaborative CEHL(K. Boussaha et al.,2015). In this work, the authors focused on the impact of collaboration on both teachers and learners. This paper aims to present a Computer-Supported Collaborative Coaching System called C.S. C.C.S. This system aims to create a virtual space based on the exchange of information and experiences between pre-experienced teachers to help new recruits or those who have difficulties and try to encourage, motivate, and provide them with needed experiences to help them escape isolation and use their solid information to guide their learners. To achieve the main task of our theme which is collaboration, we adopted the concept of groups. To demonstrate the effectiveness of the developed system an experiment was conducted. The results were highly satisfying and very encouraging.


2022 ◽  
Vol 71 (2) ◽  
pp. 2697-2719
Author(s):  
Aisha Muhammad ◽  
Mohammed A. H. Ali ◽  
Sherzod Turaev ◽  
Ibrahim Haruna Shanono ◽  
Fadhl Hujainah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document