Shape and Pixel-Property Based Automatic Affine Registration Between Ultrasound Images of Different Fetal Head

Author(s):  
Feng Cen ◽  
Yifeng Jiang ◽  
Zhijun Zhang ◽  
H. T. Tsui
Author(s):  
Sara Moccia ◽  
Maria Chiara Fiorentino ◽  
Emanuele Frontoni

Abstract Background and objectives Fetal head-circumference (HC) measurement from ultrasound (US) images provides useful hints for assessing fetal growth. Such measurement is performed manually during the actual clinical practice, posing issues relevant to intra- and inter-clinician variability. This work presents a fully automatic, deep-learning-based approach to HC delineation, which we named Mask-R$$^{2}$$ 2 CNN. It advances our previous work in the field and performs HC distance-field regression in an end-to-end fashion, without requiring a priori HC localization nor any postprocessing for outlier removal. Methods Mask-R$$^{2}$$ 2 CNN follows the Mask-RCNN architecture, with a backbone inspired by feature-pyramid networks, a region-proposal network and the ROI align. The Mask-RCNN segmentation head is here modified to regress the HC distance field. Results Mask-R$$^{2}$$ 2 CNN was tested on the HC18 Challenge dataset, which consists of 999 training and 335 testing images. With a comprehensive ablation study, we showed that Mask-R$$^{2}$$ 2 CNN achieved a mean absolute difference of 1.95 mm (standard deviation $$=\pm 1.92$$ = ± 1.92  mm), outperforming other approaches in the literature. Conclusions With this work, we proposed an end-to-end model for HC distance-field regression. With our experimental results, we showed that Mask-R$$^{2}$$ 2 CNN may be an effective support for clinicians for assessing fetal growth.


2019 ◽  
Vol 58 ◽  
pp. 101548 ◽  
Author(s):  
Zehui Lin ◽  
Shengli Li ◽  
Dong Ni ◽  
Yimei Liao ◽  
Huaxuan Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document