image processing techniques
Recently Published Documents


TOTAL DOCUMENTS

1830
(FIVE YEARS 533)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Amjad Nuseir ◽  
Hasan Albalas ◽  
Aya Nuseir ◽  
Maulla Alali ◽  
Firas Zoubi ◽  
...  

This paper aims to use a new technique of computed tomography (CT) scan image processing to correlate the image analysis with sinonasal symptoms. A retrospective cross-sectional study is conducted by analyzing the digital records of 50 patients who attended the ear, nose and throat (ENT) clinics at King Abdullah University Hospital, Jordan. The coronal plane CT scans are analyzed using our developed software. The purposes of this software are to calculate the surface area of the nasal passage at three different levels visible on coronal plane CT scans: i) the head of the inferior turbinate, ii) the head of the middle turbinate, and iii) the tail of the inferior turbinate. We employ image processing techniques to correlate the narrowing of nasal surface area with sinonasal symptoms. As a consequence, obstruction in the first level is correlated significantly with the symptoms of nasal obstruction while the narrowing in the second level is related to frontal headache. No other significant correlations are found with nasal symptoms at the third level. In our study, we find that image processing techniques can be very useful to predict the severity of common nasal symptoms and they can be used to suggest treatment and to follow up on the case progression.


Author(s):  
Kannuru Padmaja

Abstract: In this paper, we present the implementation of Devanagari handwritten character recognition using deep learning. Hand written character recognition gaining more importance due to its major contribution in automation system. Devanagari script is one of various languages script in India. It consists of 12 vowels and 36 consonants. Here we implemented the deep learning model to recognize the characters. The character recognition mainly five steps: pre-processing, segmentation, feature extraction, prediction, post-processing. The model will use convolutional neural network to train the model and image processing techniques to use the character recognition and predict the accuracy of rcognition. Keywords: convolutional neural network, character recognition, Devanagari script, deep learning.


10.29007/bg75 ◽  
2022 ◽  
Author(s):  
Nguyen Xuan Nguyen Pham ◽  
Thi Tham Tran ◽  
Minh Thang Do ◽  
Ngoc Bao Duy Tran

As society develops, many aspects of life are concerned by people, including facial skincare, avoiding acne-related diseases. In this work, we will propose a complete solution for treating acne at home, including 4 processors. First, the anomaly detector uses image processing techniques by Multi-Threshold and Color Segmentation, depending on each color channel corresponding to each type of acne. The sensitivity of the detector is 89.4%. Second, the set of anomalies classifiers into 6 main categories, including 4 major acne types and 2 non-acne types. By applying the convolutional neural model, the accuracy, sensitivity, and F1 are 84.17%, 81.5%, and 82%, respectively. Third, the acne status assessment kit is based on the mGAGS method to classify the condition of a face as mild, moderate, severe, or very severe with an accuracy of 81.25%. Finally, the product recommender, which generalizes from the results of the previous processors with an accuracy of 70-90%. This is the premise that helps doctors as well as general users to evaluate the level of acne on a face effectively and save time.


2022 ◽  
Vol 12 (2) ◽  
pp. 579
Author(s):  
Heonmoo Kim ◽  
Yosoon Choi

In this study, we propose a smart hopper system that automatically unblocks obstructions caused by rocks dropped into hoppers at mining sites. The proposed system captures RGB (red green blue) and D (depth) images of the upper surfaces of hopper models using an RGB-D camera and transmits them to a computer. Then, a virtual hopper system is used to identify rocks via machine vision-based image processing techniques, and an appropriate motion is simulated in a robot arm. Based on the simulation, the robot arm moves to the location of the rock in the real world and removes it from the actual hopper. The recognition accuracy of the proposed model is evaluated in terms of the quantity and location of rocks. The results confirm that rocks are accurately recognized at all positions in the hopper by the proposed system.


2022 ◽  
pp. 119-131
Author(s):  
Bhimavarapu Usharani

Hypertensive retinopathy is a disorder that causes hypertension which includes abnormalities in the retina that triggers vision problems. An effective automatic diagnosis and grading of the hypertensive retinopathy would be very useful in the health system. This chapter presents an improved activation function on the CNN by recognizing the lesions present in the retina and afterward surveying the influenced retina as indicated by the hypertensive retinopathy various sorts. The current approach identifies the symptoms associated of retinopathy for hypertension. This chapter presents an up-to-date review on hypertensive retinopathy detection systems that implement a variety of image processing techniques, including fuzzy image processing, along various improved activation function techniques used for feature extraction and classification. The chapter also highlights the available public databases, containing eye fundus images, which can be currently used in the hypertensive retinopathy research.


2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

Brain tumor (Glioma) is one of the deadliest diseases that attack humans, now even men or women aged 20-30 are suffering from this disease. To cure tumor in a person, doctors use MRI machine, because the results of MRI images are proven to provide better image results than CT-Scan images, but sometimes it is difficult to distinguish between the MRI images having tumors with that images not having tumor from MRI image results. It is because of resulting contrast is like any other normal organ. However, using features of image processing techniques like scaling, contrast enhancement and thresh-holding based in Deep Neural Networks the scheme can classify the results more appropriately and with high accuracy. In this paper, this study reveals the nitty-gritty of Brain tumor (Gliomas) and Deep Learning techniques for better inception in the field of computer-vision.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012078
Author(s):  
Xinhai Li ◽  
Haixin Luo ◽  
Lingcheng Zeng ◽  
Chenxu Meng ◽  
Yanhe Yin

Abstract Currently, the check of the relay protection pressure plate’s throw-out status is mainly carried out manually, due to the extremely large number of decompression plates, manual methods can cause detection errors due to fatigue. This paper proposes the processing of relay protection pressure plate photographs by using image processing techniques, the Faster R-CNN image recognition algorithm uses the feature of generating detection frames directly using RPN to identify the platen throwback status of the processed platen images, greatly improving the speed and accuracy of the detection frame generation. The experimental results show that, the method proposed in this paper effectively solves the problem of errors arising from manual verification checks of platen throwbacks, reduced workload for substation staff, the platen recognition rate can be over 98% correct.


Sign in / Sign up

Export Citation Format

Share Document