Plasma Membrane Carnitine Transport Defect

Author(s):  
Markus Braun-Falco ◽  
Henry J. Mankin ◽  
Sharon L. Wenger ◽  
Markus Braun-Falco ◽  
Stephan DiSean Kendall ◽  
...  
2012 ◽  
Vol 55 (2) ◽  
pp. 58
Author(s):  
Hyun-Seok Cho ◽  
Young Kwang Choo ◽  
Hong Jin Lee ◽  
Hyeon-Soo Lee

Author(s):  
Nils Peters ◽  
Martin Dichgans ◽  
Sankar Surendran ◽  
Josep M. Argilés ◽  
Francisco J. López-Soriano ◽  
...  

2000 ◽  
Vol 267 (7) ◽  
pp. 1985-1994 ◽  
Author(s):  
Simona Berardi ◽  
Bruno Stieger ◽  
Bruno Hagenbuch ◽  
Ernesto Carafoli ◽  
Stephan Krähenbühl

Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 3077-3084 ◽  
Author(s):  
Mia D. Reed-Tsur ◽  
Antonio De la Vieja ◽  
Christopher S. Ginter ◽  
Nancy Carrasco

I− is actively transported into thyrocytes via the Na+/I− symporter (NIS), a key glycoprotein located on the basolateral plasma membrane. The cDNA encoding rat NIS was identified in our laboratory, where an extensive structure/function characterization of NIS is being conducted. Several NIS mutants have been identified as causes of congenital I− transport defect (ITD), including V59E NIS. ITD is characterized by low thyroid I− uptake, low saliva/plasma I− ratio, hypothyroidism, and goiter and may cause mental retardation if untreated. Studies of other ITD-causing NIS mutants have revealed valuable information regarding NIS structure/function. V59E NIS was reported to exhibit as much as 30% of the activity of wild-type NIS. However, this observation was at variance with the patients’ phenotype of total lack of activity. We have thoroughly characterized V59E NIS and studied several amino acid substitutions at position 59. We demonstrated that, in contrast to the previous report, V59E NIS is inactive, although it is properly targeted to the plasma membrane. Glu and all other charged amino acids or Pro at position 59 also yielded nonfunctional NIS proteins. However, I− uptake was rescued to different degrees by the other substitutions. Although the Km values for Na+ and I− were not altered in these active mutants, we found that the structural requirement for NIS function at position 59 is a neutral, helix-promoting amino acid. This result suggests that the region that contains V59 may be involved in intramembrane helix-helix interactions during the transport cycle without being in direct contact with the substrates.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1598
Author(s):  
Magdalena Topolska ◽  
Françoise M. Roelants ◽  
Edward P. Si ◽  
Jeremy Thorner

Membrane-tethered sterol-binding Lam/Ltc proteins localize at junctions between the endoplasmic reticulum (ER) membrane and other organelles. Two of the six family members—Lam2/Ltc4 (initially Ysp2) and paralog Lam4/Ltc3—localize to ER-plasma membrane (PM) contact sites (CSs) and mediate retrograde ergosterol transport from the PM to the ER. Our prior work demonstrated that Lam2 and Lam4 are substrates of TORC2-regulated protein kinase Ypk1, that Ypk1-mediated phosphorylation inhibits their function in retrograde sterol transport, and that PM sterol retention bolsters cell survival under stressful conditions. At ER-PM CSs, Lam2 and Lam4 associate with Laf1/Ymr102c and Dgr2/Ykl121w (paralogous WD40 repeat-containing proteins) that reportedly bind sterol. Using fluorescent tags, we found that Lam2 and Lam4 remain at ER-PM CSs when Laf1 and Dgr2 are absent, whereas neither Laf1 nor Dgr2 remain at ER-PM CSs when Lam2 and Lam4 are absent. Loss of Laf1 (but not Dgr2) impedes retrograde ergosterol transport, and a laf1∆ mutation does not exacerbate the transport defect of lam2∆ lam4∆ cells, indicating a shared function. Lam2 and Lam4 bind Laf1 and Dgr2 in vitro in a pull-down assay, and the PH domain in Lam2 hinders its interaction with Laf1. Lam2 phosphorylated by Ypk1, and Lam2 with phosphomimetic (Glu) replacements at its Ypk1 sites, exhibited a marked reduction in Laf1 binding. Thus, phosphorylation prevents Lam2 interaction with Laf1 at ER-PM CSs, providing a mechanism by which Ypk1 action inhibits retrograde sterol transport.


1996 ◽  
Vol 223 (2) ◽  
pp. 283-287 ◽  
Author(s):  
Masamichi Kuwajima ◽  
Kang-mo Lu ◽  
Hideyoshi Harashima ◽  
Akira Ono ◽  
Izumi Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document