dilated cardiomyopathy
Recently Published Documents





2022 ◽  
Vol 19 (1) ◽  
pp. 73-76
Madhu Aryal

Introduction: Cardiomyopathy is the disorder of the heart muscles which can be dilated, hypertrophic or restrictive type. Dilated cardiomyopathy is caused by genetic and non-genetic causes but many of the causes are still not known. Echocardiography is an important imaging technique to diagnose and manage dilated cardiomyopathy. Aims: This study aims to assess the clinical and echocardiographic findings among patients with dilated cardiomyopathy. Methods: This is a cross-sectional, observational study conducted in Nepalgunj Medical College from January 2021 to June 2021. A total of 61 patients with dilated Cardiomyopathy were enrolled after obtaining written informed consent. Clinical examination and echocardiographic findings were recorded and data analysis was done using Statistical Package for Social Sciences. Results: The participants included 31 men and 30 women with dilated cardiomyopathy. The mean age of the participants was 58.49 + 15.46 years. The most common complaint was shortness of breath 84.5% and the most common clinical presentation was bilateral basal crepitation 98.4%. The patients mostly had diastolic left ventricle internal diameter of 5.5-6 cm and ejection fraction of 21-30%. Mitral regurgitation was observed among most 58(95.1%) of the patients. Conclusion: This study concludes that shortness of breath and bilateral basal crepitation are the most common presentation. Left ventricle dilation, reduced ejection fraction and mitral regurgitation are seen among majority of the patients.

Trials ◽  
2022 ◽  
Vol 23 (1) ◽  
Sua Jo ◽  
Hyeyeon Moon ◽  
Kyungil Park ◽  
Chang-Bae Sohn ◽  
Jeonghwan Kim ◽  

Abstract Background Dilated cardiomyopathy (DCMP) is characterized by ventricular chamber enlargement and systolic dysfunction which may cause heart failure. Patients with DCMP have overactivation of the renin-angiotensin-aldosterone systems, which can also adversely affect myocardial metabolism in heart failure. The impairment of myocardial metabolism can contribute to the progression of left ventricular remodeling and contractile dysfunction in heart failure. Although angiotensin II receptor blockers (ARBs) have been used to treat patients with DCMP, there has been no direct comparison of the efficacy of these agents. The objective of this study is to compare the effects of olmesartan and valsartan on myocardial metabolism in patients with DCMP. Methods/design The OVOID study (a comparison study of Olmesartan and Valsartan On myocardial metabolism In patients with Dilated cardiomyopathy) is designed as a non-blinded, open-label, parallel-group, prospective, randomized, controlled, multicenter clinical trial. A total of 40 DCMP patients aged between 20 and 85 years will be randomly allocated into the olmesartan or the valsartan group. 18F-fluoro-2-deoxyglucose (FDG) cardiac positron emission tomography (PET) will be performed at baseline and six months after receiving the study agent. The primary endpoint is myocardial glucose consumption per square meter, measured using 18F-FDG PET 6 months after receiving the study agent. Discussion The purpose of this trial is to compare the efficacy between olmesartan and valsartan in improving myocardial metabolism in DCMP patients. This will be the first randomized comparative study investigating the differential effects of ARBs on heart failure. Trial registration ClinicalTrials.govNCT04174456. Registered on 18 November 2019

2022 ◽  
Vol 23 (2) ◽  
pp. 871
Joseph D. Powers ◽  
Natalie J. Kirkland ◽  
Canzhao Liu ◽  
Swithin S. Razu ◽  
Xi Fang ◽  

Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.

Medicine ◽  
2022 ◽  
Vol 101 (2) ◽  
pp. e28551
Yilong Man ◽  
Changying Yi ◽  
Meili Fan ◽  
Tianyu Yang ◽  
Peng Liu ◽  

К.П. Кравченко ◽  
К. Л. Козлов ◽  
А.О. Дробинцева ◽  
Д.С. Медведев ◽  
В.О. Полякова

Для понимания патогенеза дилатационной кардиомиопатии (ДКМП) необходимо установить молекулярно-клеточные механизмы старения миокарда, в том числе связанные с программируемой клеточной гибелью, молекулярные механизмы которого практически не изучены. Цель работы - изучение маркеров апоптоза в кардиомиоцитах у пациентов с ДКМП in vitro. В работе использовали метод первичных диссоциированных клеточных культур и метод иммунофлюоресцентной конфокальной лазерной микроскопии. Для моделирования клеточного старения использовали клетки 3-го и 14-го пассажей, соответствующие «молодым» и «старым» культурам. На молекулярном уровне старение клеток кардиомиоцитов сопровождалось повышением экспрессии р16 в 2 раза по сравнению с «молодыми культурами» как в контрольной, так и в группе с ДКМП. Также установлено, что экспрессия р16 в культурах, взятых от пациентов с патологией, была в 2 раза выше, чем в аналогичных культурах от здоровых пациентов. Экспрессия р21 была повышена в группе с ДКМП по сравнению с контрольной группой, однако при старении культуры экспрессия p21 не изменялась, оставаясь на высоком уровне. Наиболее значимые различия были получены при сравнении экспрессии Bax в культуре клеток кардиомиоцитов из группы с ДКМП в «молодой» культуре с нормой - в 3,2 раза. Старение клеток миокарда на молекулярном уровне проявлялось в повышении экспрессии белка Baх, именно он является запускающим механизмом митохондриального пути апоптоза. Возможно, этот путь клеточной гибели является превалирующем при ДКМП. To understand the pathogenesis of dilated cardiomyopathy (DCMP), it is necessary to establish the molecular-cellular mechanisms of myocardial aging, including those associated with programmed cell death, the molecular mechanisms of which have not been practically studied. The aim of this work is to study markers of apoptosis in cardiomyocytes of patients with DCMP in vitro. We used the method of primary dissociated cell cultures and the method of immunofluorescence confocal laser microscopy. Cells of the 3 and 14 passages, corresponding to «young» and «old» cultures, were used to simulate cellular senescence. Results. At the molecular level, aging of cardiomyocyte cells was accompanied by a twofold increase in the expression of p16 compared to «young cultures» both in the control group and in the group with DCMP. It was also found that the expression of p16 in cultures taken from patients with pathology was 2 times higher than in similar cultures from healthy patients. The expression of p21 was increased in the group with DCMP compared to the control; however, with aging of the culture, the expression of p21 did not change, remaining at a significant level. The most significant differences were obtained when comparing the expression of Bax in the cell culture of cardiomyocytes from the group with DCMP in a «young» culture compared with the norm, 3,2 times. Aging of myocardial cells at the molecular level was manifested in an increase in the expression of the Bax protein, which is the triggering mechanism of the mitochondrial apoptosis pathway. It is possible that this pathway of cell death is prevalent in DCMP.

2022 ◽  
Vol 8 ◽  
Ekaterina Kushnareva ◽  
Vladimir Kushnarev ◽  
Anna Artemyeva ◽  
Lubov Mitrofanova ◽  
Olga Moiseeva

Objective: Immune checkpoints inhibitors are promising and wide-spread agents in anti-cancer therapy. However, despite their efficacy, these agents could cause cardiotoxicity, a rare but life-threatening event. In addition, there are still no well-described predictive factors for the development of immune-related adverse events and information on high risk groups. According to known experimental studies we hypothesized that cardiovascular diseases may increase myocardial PD-L1 expression, which could be an extra target for Checkpoint inhibitors and a potential basis for complications development.Methods: We studied patterns of myocardial PD-L1 expression in non-cancer-related cardiovascular diseases, particularly ischemic heart disease (n = 12) and dilated cardiomyopathy (n = 7), compared to patients without known cardiovascular diseases (n = 10) using mouse monoclonal anti-PD-L1 antibody (clone 22C3, 1:50, Dako). Correlation between immunohistochemical data and echocardiographic parameters was assessed. Statistical analyses were performed using R Statistical Software—R studio version 1.3.1093.Results: In the myocardium of cardiac patients, we found membranous, cytoplasmic, and endothelial expression of PD-L1 compared to control group. In samples from patients with a history of myocardial infarction, PD-L1 membrane and endothelial expression was more prominent and frequent, and cytoplasmic and intercalated discs staining was more localized. In contrast, samples from patients with dilated cardiomyopathy displayed very faint endothelial staining, negative membrane staining, and more diffuse PD-L1 expression in the cytoplasm and intercalated discs. In samples from the non-cardiac patients, no convincing PD-L1 expression was observed. Moreover, we discovered a significant negative correlation between PD-L1 expression level and left ventricular ejection fraction and a positive correlation between PD-L1 expression level and left ventricular end-diastolic volume.Conclusions: The present findings lay the groundwork for future experimental and clinical studies of the role of the PD-1/PD-L1 pathway in cardiovascular diseases. Further studies are required to find patients at potentially high risk of cardiovascular adverse events associated with immune checkpoint inhibitors therapy.

2022 ◽  
pp. 1-5
Sanam Safi ◽  
Stephen P. Sanders ◽  
Melissa Zhao ◽  
Chrystalle Katte Carreon

Abstract A maternally inherited novel pathogenic non-POU domain-containing octamer-binding gene variant c.767G>T, p.R256I [NM_001145408], manifested in a male infant as dilated cardiomyopathy with severe left ventricular dysfunction and dilation, biventricular non-compaction, tricuspid hypoplasia, and hydrocephaly. To the best of our knowledge, no previous non-POU domain-containing octamer-binding gene variants with biventricular non-compaction have been associated with tricuspid valve hypoplasia. Hence, this case introduces a new pathogenic variant observed in the non-POU domain-containing octamer-binding gene and adds to the range of cardiac phenotypes identified in non-POU domain-containing octamer-binding gene variants.

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 112
Qing Kong ◽  
Jinping Gu ◽  
Ruohan Lu ◽  
Caihua Huang ◽  
Xiaomin Hu ◽  

Viral myocarditis (VMC) is an inflammatory heart condition which can induce dilated cardiomyopathy (DCM). However, molecular mechanisms underlying the progression of VMC into DCM remain exclusive. Here, we established mouse models of VMC and DCM by infecting male BALB/c mice with Coxsackievirus B3 (CVB3), and performed NMR-based metabonomic analyses of mouse sera. The mouse models covered three pathological stages including: acute VMC (aVMC), chronic VMC (cVMC) and DCM. We recorded 1D 1H-NMR spectra on serum samples and conducted multivariate statistical analysis on the NMR data. We found that metabolic profiles of these three pathological stages were distinct from their normal controls (CON), and identified significant metabolites primarily responsible for the metabolic distinctions. We identified significantly disturbed metabolic pathways in the aVMC, cVMC and DCM stages relative to CON, including: taurine and hypotaurine metabolism; pyruvate metabolism; glycine, serine and threonine metabolism; glycerolipid metabolism. Additionally, we identified potential biomarkers for discriminating a VMC, cVMC and DCM from CON including: taurine, valine and acetate for aVMC; glycerol, valine and leucine for cVMC; citrate, glycine and isoleucine for DCM. This work lays the basis for mechanistically understanding the progression from acute VMC to DCM, and is beneficial to exploitation of potential biomarkers for prognosis and diagnosis of heart diseases.

2022 ◽  
Vol 9 (1) ◽  
pp. 20
Carles Díez-López ◽  
Joel Salazar-Mendiguchía ◽  
Elena García-Romero ◽  
Lara Fuentes ◽  
Josep Lupón ◽  

Aims: Non-ischaemic dilated cardiomyopathy (NIDCM) is characterized by left ventricular (LV) chamber enlargement and systolic dysfunction in the absence of coronary artery disease. Left ventricular reverse remodelling (LVRR) is the ability of a dilated ventricle to restore its normal size, shape and function. We sought to determine the frequency, clinical predictors and prognostic implications of LVRR, in a cohort of heart failure (HF) patients with NIDCM. Methods: We conducted a multicentre observational, retrospective cohort study of patients with NIDCM, with prospective serial echocardiography evaluations. LVRR was defined as an increase of ≥15% in left ventricular ejection fraction (LVEF) or as a LVEF increase ≥ 10% plus reduction of LV end-systolic diameter index ≥ 20%. We used multivariable logistic regression analyses to identify the baseline clinical predictors of LVRR and evaluate the prognostic impact of LVRR. Results: LVRR was achieved in 42.5% of 527 patients with NIDCM during the first year of follow-up (median LVEF 49%, median change +22%), Alcoholic aetiology, HF duration, baseline LVEF and the absence of LBBB (plus NT-proBNP levels when in the model), were the strongest predictors of LVRR. During a median follow-up of 47 months, 134 patients died (25.4%) and 7 patients (1.3%) received a heart transplant. Patients with LVRR presented better outcomes, regardless of other clinical conditions. Conclusions: In patients with NIDCM, LVRR was frequent and was associated with improved prognosis. Major clinical predictors of LVRR were alcoholic cardiomyopathy, absence of LBBB, shorter HF duration, and lower baseline LVEF and NT-proBNP levels. Our study advocates for clinical phenotyping of non-ischaemic dilated cardiomyopathy and intense gold-standard treatment optimization of patients according to current guidelines and recommendations in specialized HF units.

Sign in / Sign up

Export Citation Format

Share Document