Computational Biology – The New Frontier of Computer Science

Author(s):  
Amar Mukherjee
Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 374
Author(s):  
Milan Toma ◽  
Riccardo Concu

All living things are related to one another [...]


Author(s):  
Andrew LaBrunda ◽  
Michelle LaBrunda

It is impossible to pinpoint the exact moment at which computational biology became a discipline of its own, but one could say that it was in 1997 when the society of computational biology was formed. Regardless of its exact birthday, the research community has rapidly adopted computational biology and its applications are being vigorously explored. The study and application of medicine is a dynamic challenge. Changes in medicine usually take place as a result of new knowledge acquired through observation and experimentation. When a tamping rod 1-inch thick went through Phineas Gage’s head in 1848, his survival gave the medical field an unusual opportunity to observe behavior of a person missing their prefrontal cortex. This observation lead to the short-lived psychosurgical procedure known as a lobotomy, which attempted to change a person’s behavior by separating two portions of a person’s brain (Pols, 2001). Countless observations, experiments and mistakes represent how almost all medical knowledge has been acquired. The relatively new field of computational biology offers a nontraditional approach to contribute to the medical body of knowledge. Computational biology is a new field combining biology, computer science, and mathematics to solve problems that are unworkable with traditional biological techniques. It includes traditional areas such as systems biology, molecular biology, biochemistry, biophysics, statistics, and computer science, as well as recently developed disciplines including bioinformatics and computational genomics. Algorithms, which are able to closely model biological behavior, validate the medical understanding of the observed processes and can be used to model scenarios that might not be able to be physically reproduced. The goal of computational biology is to use mathematics and computer science to model biological systems on the molecular level. Instead of taking on large complex systems, computational biology is starting small, literally. Modeling problems in molecular biology and biochemistry is a far less daunting task. At a microscopic level, patient’s characteristics drop out of the equation and all information behavior affecting is known. This creates a deterministic model which, given the same input, will always produce the same output. Some of the major subdisciplines of computational biology are computational genomics, systems biology, protein structure prediction, and evolutionary biology, all of which model microscopic structures.


2018 ◽  
Vol 20 (4) ◽  
pp. 1376-1383 ◽  
Author(s):  
Paul Medvedev

Abstract As computer scientists working in bioinformatics/computational biology, we often face the challenge of coming up with an algorithm to answer a biological question. This occurs in many areas, such as variant calling, alignment and assembly. In this tutorial, we use the example of the genome assembly problem to demonstrate how to go from a question in the biological realm to a solution in the computer science realm. We show the modeling process step-by-step, including all the intermediate failed attempts. Please note this is not an introduction to how genome assembly algorithms work and, if treated as such, would be incomplete and unnecessarily long-winded.


2016 ◽  
Author(s):  
Kevin S. Bonham ◽  
Melanie I. Stefan

AbstractWhile women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.


2007 ◽  
Vol 7 (15) ◽  
pp. 1537-1540 ◽  
Author(s):  
Raul Cachau ◽  
Fernando Gonzalez-Nilo ◽  
Oscar Ventura ◽  
Martin Fritts

2005 ◽  
Vol 173 (4S) ◽  
pp. 86-86
Author(s):  
Donna Y. Deng ◽  
Matthew P. Rutman ◽  
Larissa V. Rodriguez ◽  
Shlomo Raz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document