scholarly journals A Linear Time Algorithm for Constructing Maximally Symmetric Straight-Line Drawings of Planar Graphs

Author(s):  
Seok-Hee Hong ◽  
Peter Eades
1997 ◽  
Vol 07 (03) ◽  
pp. 211-223 ◽  
Author(s):  
Marek Chrobak ◽  
Goos Kant

We consider the problem of embedding the vertices of a plane graph into a small (polynomial size) grid in the plane in such a way that the edges are straight, nonintersecting line segments and faces are convex polygons. We present a linear-time algorithm which, given an n-vertex 3-connected plane G (with n ≥ 3), finds such a straight-line convex embedding of G into a (n - 2) × (n - 2) grid.


2017 ◽  
Vol 27 (03) ◽  
pp. 159-176
Author(s):  
Helmut Alt ◽  
Sergio Cabello ◽  
Panos Giannopoulos ◽  
Christian Knauer

We study the complexity of the following cell connection problems in segment arrangements. Given a set of straight-line segments in the plane and two points [Formula: see text] and [Formula: see text] in different cells of the induced arrangement: [(i)] compute the minimum number of segments one needs to remove so that there is a path connecting [Formula: see text] to [Formula: see text] that does not intersect any of the remaining segments; [(ii)] compute the minimum number of segments one needs to remove so that the arrangement induced by the remaining segments has a single cell. We show that problems (i) and (ii) are NP-hard and discuss some special, tractable cases. Most notably, we provide a near-linear-time algorithm for a variant of problem (i) where the path connecting [Formula: see text] to [Formula: see text] must stay inside a given polygon [Formula: see text] with a constant number of holes, the segments are contained in [Formula: see text], and the endpoints of the segments are on the boundary of [Formula: see text]. The approach for this latter result uses homotopy of paths to group the segments into clusters with the property that either all segments in a cluster or none participate in an optimal solution.


1996 ◽  
Vol 07 (02) ◽  
pp. 95-110 ◽  
Author(s):  
HEIKE RIPPHAUSEN-LIPA ◽  
DOROTHEA WAGNER ◽  
KARSTEN WEIHE

In this paper we present a linear-time algorithm for the vertex-disjoint Two-Face Paths Problem in planar graphs, i.e., the problem of finding k vertex-disjoint paths between pairs of terminals which lie on two face boundaries. The algorithm is based on the idea of finding rightmost paths with a certain property in planar graphs. Using this method, a linear-time algorithm for finding vertex-disjoint paths of a prescribed homotopy is derived. Moreover, the algorithm is modified to solve the more general linkage problem in linear time, as well.


Algorithmica ◽  
2021 ◽  
Author(s):  
Guido Brückner ◽  
Nadine Krisam ◽  
Tamara Mchedlidze

AbstractWe introduce and study level-planar straight-line drawings with a fixed number $$\lambda $$ λ of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an $$O(n \log ^2 n / \log \log n)$$ O ( n log 2 n / log log n ) -time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present $$O(n^{4/3} \log n)$$ O ( n 4 / 3 log n ) -time and $$O(\lambda n^{10/3} \log n)$$ O ( λ n 10 / 3 log n ) -time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with $$\lambda $$ λ slopes is -hard even in restricted cases.


1997 ◽  
Vol 62 (6) ◽  
pp. 315-322 ◽  
Author(s):  
Shin-ichi Nakano ◽  
Md.Saidur Rahman ◽  
Takao Nishizeki

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Zuosong Liang ◽  
Huandi Wei

Every graph G = V , E considered in this paper consists of a finite set V of vertices and a finite set E of edges, together with an incidence function that associates each edge e ∈ E of G with an unordered pair of vertices of G which are called the ends of the edge e . A graph is said to be a planar graph if it can be drawn in the plane so that its edges intersect only at their ends. A proper k -vertex-coloring of a graph G = V , E is a mapping c : V ⟶ S ( S is a set of k colors) such that no two adjacent vertices are assigned the same colors. The famous Four Color Theorem states that a planar graph has a proper vertex-coloring with four colors. However, the current known proof for the Four Color Theorem is computer assisted. In addition, the correctness of the proof is still lengthy and complicated. In 2010, a simple O n 2 time algorithm was provided to 4-color a 3-colorable planar graph. In this paper, we give an improved linear-time algorithm to either output a proper 4-coloring of G or conclude that G is not 3-colorable when an arbitrary planar graph G is given. Using this algorithm, we can get the proper 4-colorings of 3-colorable planar graphs, planar graphs with maximum degree at most five, and claw-free planar graphs.


Sign in / Sign up

Export Citation Format

Share Document