linear time algorithm
Recently Published Documents


TOTAL DOCUMENTS

501
(FIVE YEARS 71)

H-INDEX

37
(FIVE YEARS 3)

Algorithmica ◽  
2022 ◽  
Author(s):  
Yusuke Kobayashi ◽  
Yoshio Okamoto ◽  
Yota Otachi ◽  
Yushi Uno

AbstractA graph $$G = (V,E)$$ G = ( V , E ) is a double-threshold graph if there exist a vertex-weight function $$w :V \rightarrow \mathbb {R}$$ w : V → R and two real numbers $$\mathtt {lb}, \mathtt {ub}\in \mathbb {R}$$ lb , ub ∈ R such that $$uv \in E$$ u v ∈ E if and only if $$\mathtt {lb}\le \mathtt {w}(u) + \mathtt {w}(v) \le \mathtt {ub}$$ lb ≤ w ( u ) + w ( v ) ≤ ub . In the literature, those graphs are studied also as the pairwise compatibility graphs that have stars as their underlying trees. We give a new characterization of double-threshold graphs that relates them to bipartite permutation graphs. Using the new characterization, we present a linear-time algorithm for recognizing double-threshold graphs. Prior to our work, the fastest known algorithm by Xiao and Nagamochi [Algorithmica 2020] ran in $$O(n^{3} m)$$ O ( n 3 m ) time, where n and m are the numbers of vertices and edges, respectively.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
David Schaller ◽  
Marc Hellmuth ◽  
Peter F. Stadler

Abstract Background The supertree problem, i.e., the task of finding a common refinement of a set of rooted trees is an important topic in mathematical phylogenetics. The special case of a common leaf set L is known to be solvable in linear time. Existing approaches refine one input tree using information of the others and then test whether the results are isomorphic. Results An O(k|L|) algorithm, , for constructing the common refinement T of k input trees with a common leaf set L is proposed that explicitly computes the parent function of T in a bottom-up approach. Conclusion is simpler to implement than other asymptotically optimal algorithms for the problem and outperforms the alternatives in empirical comparisons. Availability An implementation of in Python is freely available at https://github.com/david-schaller/tralda.


2021 ◽  
Vol 22 (4) ◽  
pp. 659-674
Author(s):  
R. O. Braga ◽  
V. M. Rodrigues ◽  
R. O. Silva

We present a linear-time algorithm that computes in a given real interval the number of eigenvalues of any symmetric matrix whose underlying graph is unicyclic. The algorithm can be applied to vertex- and/or edge-weighted or unweighted unicyclic graphs. We apply the algorithm to obtain some general results on the spectrum of a generalized sun graph for certain matrix representations which include the Laplacian, normalized Laplacian and signless Laplacian matrices.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Zuosong Liang ◽  
Huandi Wei

Every graph G = V , E considered in this paper consists of a finite set V of vertices and a finite set E of edges, together with an incidence function that associates each edge e ∈ E of G with an unordered pair of vertices of G which are called the ends of the edge e . A graph is said to be a planar graph if it can be drawn in the plane so that its edges intersect only at their ends. A proper k -vertex-coloring of a graph G = V , E is a mapping c : V ⟶ S ( S is a set of k colors) such that no two adjacent vertices are assigned the same colors. The famous Four Color Theorem states that a planar graph has a proper vertex-coloring with four colors. However, the current known proof for the Four Color Theorem is computer assisted. In addition, the correctness of the proof is still lengthy and complicated. In 2010, a simple O n 2 time algorithm was provided to 4-color a 3-colorable planar graph. In this paper, we give an improved linear-time algorithm to either output a proper 4-coloring of G or conclude that G is not 3-colorable when an arbitrary planar graph G is given. Using this algorithm, we can get the proper 4-colorings of 3-colorable planar graphs, planar graphs with maximum degree at most five, and claw-free planar graphs.


2021 ◽  
Vol 40 (4) ◽  
pp. 805-814
Author(s):  
Sohel Rana ◽  
Sk. Md. Abu Nayeem

Let G = (V, E) be a graph. A subset De of V is said to be an equitable dominating set if for every v ∈ V \ De there exists u ∈ De such that uv ∈ E and |deg(u) − deg(v)| ≤ 1, where, deg(u) and deg(v) denote the degree of the vertices u and v respectively. An equitable dominating set with minimum cardinality is called the minimum equitable dominating set and its cardinality is called the equitable domination number and it is denoted by γe. The problem of finding minimum equitable dominating set in general graphs is NP-complete. In this paper, we give a linear time algorithm to determine minimum equitable dominating set of a tree.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1592
Author(s):  
Iztok Peterin ◽  
Gabriel Semanišin

A shortest path P of a graph G is maximal if P is not contained as a subpath in any other shortest path. A set S⊆V(G) is a maximal shortest paths cover if every maximal shortest path of G contains a vertex of S. The minimum cardinality of a maximal shortest paths cover is called the maximal shortest paths cover number and is denoted by ξ(G). We show that it is NP-hard to determine ξ(G). We establish a connection between ξ(G) and several other graph parameters. We present a linear time algorithm that computes exact value for ξ(T) of a tree T.


Sign in / Sign up

Export Citation Format

Share Document