Totally Bounded Cubic Systems in ℝ2

Author(s):  
Roberto Conti ◽  
Marcello Galeotti
2006 ◽  
Vol 99 (8) ◽  
pp. 08Q511 ◽  
Author(s):  
B. Presa ◽  
R. Matarranz ◽  
J. F. Calleja ◽  
M. C. Contreras
Keyword(s):  

2001 ◽  
Vol 114 (3) ◽  
pp. 273-284 ◽  
Author(s):  
Hans-Peter A. Künzi ◽  
Attila Losonczi
Keyword(s):  

Author(s):  
Vladimir V. Basov ◽  
◽  
Aleksandr S. Chermnykh ◽  

2013 ◽  
Vol 29 (2) ◽  
pp. 267-273
Author(s):  
MIHAIL URSUL ◽  
◽  
MARTIN JURAS ◽  

We prove that every infinite nilpotent ring R admits a ring topology T for which (R, T ) has an open totally bounded countable subring with trivial multiplication. A new example of a compact ring R for which R2 is not closed, is given. We prove that every compact Bezout domain is a principal ideal domain.


1986 ◽  
Vol 28 (1) ◽  
pp. 31-36 ◽  
Author(s):  
P. Fletcher ◽  
W. F. Lindgren

The notation and terminology of this paper coincide with that of reference [4], except that here the term, compactification, refers to a T1-space. It is known that a completely regular totally bounded Hausdorff quasi-uniform space (X, ) has a Hausdorff compactification if and only if contains a uniformity compatible with ℱ() [4, Theorem 3.47]. The use of regular filters by E. M. Alfsen and J. E. Fenstad [1] and O. Njåstad [5], suggests a construction of a compactification, which differs markedly from the construction obtained in [4]. We use this construction to show that a totally bounded T1 quasi-uniform space has a compactification if and only if it is point symmetric. While it is pleasant to have a characterization that obtains for all T1-spaces, the present construction has several further attributes. Unlike the compactification obtained in [4], the compactification given here preserves both total boundedness and uniform weight, and coincides with the uniform completion when the quasi-uniformity under consideration is a uniformity. Moreover, any quasi-uniformly continuous map from the underlying quasi-uniform space of the compactification onto any totally bounded compact T1-space has a quasi-uniformly continuous extension to the compactification. If is the Pervin quasi-uniformity of a T1-space X, the compactification we obtain is the Wallman compactification of (X, ℱ ()). It follows that our construction need not provide a Hausdorff compactification, even when such a compactification exists; but we obtain a sufficient condition in order that our compactification be a Hausdorff space and note that this condition is satisfied by all uniform spaces and all normal equinormal quasi-uniform spaces. Finally, we note that our construction is reminiscent of the completion obtained by Á. Császár for an arbitrary quasi-uniform space [2, Section 3]; in particular our Theorem 3.7 is comparable with the result of [2, Theorem 3.5].


Author(s):  
T. R. Blows ◽  
N. G. Lloyd

SynopsisTwo-dimensional differential systemsare considered, where P and Q are polynomials. The question of interest is the maximum possible numberof limit cycles of such systems in terms of the degree of P and Q. An algorithm is described for determining a so-called focal basis; this can be implemented on a computer. Estimates can then be obtained for the number of small-amplitude limit cycles. The technique is applied to certain cubic systems; a class of examples with exactly five small-amplitude limit cycles is constructed. Quadratic systems are also considered.


Sign in / Sign up

Export Citation Format

Share Document