observer design
Recently Published Documents


TOTAL DOCUMENTS

2789
(FIVE YEARS 601)

H-INDEX

73
(FIVE YEARS 12)

Author(s):  
Kamal Rachid ◽  
Hassan El Fadil ◽  
Fouad Giri ◽  
Aziz Rachid ◽  
Fatima-Zahra Chaoui

Author(s):  
Lucas José da Silva Moreira ◽  
Mirko Fiacchini ◽  
Gildas Besançon ◽  
Francesco Ferrante ◽  
Hervé Roustan
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Chin-Lin Pen ◽  
Wen-Jer Chang ◽  
Yann-Horng Lin

This paper develops a Takagi-Sugeno fuzzy observer gain design algorithm to estimate ship motion based on Automatic Identification System (AIS) data. Nowadays, AIS data is widely applied in the maritime field. To solve the problem of safety, it is necessary to accurately estimate the trajectory of ships. Firstly, a nonlinear ship dynamic system is considered to represent the dynamic behaviors of ships. In the literature, nonlinear observer design methods have been studied to estimate the ship path based on AIS data. However, the nonlinear observer design method is challenging to create directly since some dynamic ship systems are more complex. This paper represents nonlinear ship dynamic systems by the Takagi-Sugeno fuzzy model. Based on the Takagi-Sugeno fuzzy model, a fuzzy observer design method is developed to solve the problem of estimating using AIS data. Moreover, the observer gains of the fuzzy observer can be adjusted systemically by a novel algorithm. Via the proposed algorithm, a more suitable or better observer can be obtained to achieve the objectives of estimation. Corresponding to different AIS data, the better results can also be obtained individually. Finally, the simulation results are presented to show the effectiveness and applicability of the proposed fuzzy observer design method. Some comparisons with the previous nonlinear observer design method are also given in the simulations.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Ghulam E. Mustafa Abro ◽  
Zain Anwar Ali ◽  
Saiful A. Zulkifli ◽  
Vijanth Sagayan Asirvadam

The main aim of this manuscript is to design and demonstrate the performance of different control algorithms with position estimator and disturbance observer to track the helical trajectory by an underactuated quadrotor craft under the influence of unmodelled dynamic factors and external disturbances. The manuscript consists of the derivations related to the kinematics and dynamics of quadrotor dully derived using the Newton Euler approach. It is one of the strenuous tasks to stabilize and control the quadrotor for helical trajectory tracking since it is an underactuated mechatronic system. In addition to this, with inclusion of unmodelled dynamic factors, it faces some of the serious transient and steady-state issues including Zeno noise. In this research manuscript, dual-loop single-dimension fuzzy sliding mode control (DLSDF-SMC) is proposed to improve the helical trajectory tracking performance, and to tackle the unmodelled dynamic factors, a state feedback controller is proposed consisting of a position estimator and disturbance observer design. The entire system is distributed into two subsystems such that within the angular subsystem, the attitude control is proposed using DLSDF-SMC, and for the translational subsystem, the paper proposes the position control design based on the hyperbolic function to avoid the gimbal lock issue. The overall stability of the proposed closed-loop control scheme is also proved. The simulation work for the proposed algorithm is performed using MATLAB and Simulink software and compared with the conventional sliding mode control (SMC) and fuzzy-based SMC control designs. This work demonstrates that the DLSDF-SMC control technique with position estimator and disturbance observer design in feedback not only improves the aggressive maneuvers while tracking the helical trajectory but also tackles the transient and steady-state issues.


Author(s):  
Robert Mahony ◽  
Pieter van Goor ◽  
Tarek Hamel

Equivariance is a common and natural property of many nonlinear control systems, especially those associated with models of mechatronic and navigation systems. Such systems admit a symmetry, associated with the equivariance, that provides structure enabling the design of robust and high-performance observers. A key insight is to pose the observer state to lie in the symmetry group rather than on the system state space. This allows one to define a global intrinsic equivariant error but poses a challenge in defining internal dynamics for the observer. By choosing an equivariant lift of the system dynamics for the observer internal model, we show that the error dynamics have a particularly nice form. Applying the methodology of extended Kalman filtering to the equivariant error state yields a filter we term the equivariant filter. The geometry of the state-space manifold appears naturally as a curvature modification to the classical Riccati equation for extended Kalman filtering. The equivariant filter exploits the symmetry and respects the geometry of an equivariant system model, and thus yields high-performance, robust filters for a wide range of mechatronic and navigation systems. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 22 (12) ◽  
pp. 625-633
Author(s):  
A. V. Zuev ◽  
A. N. Zhirabok ◽  
V. F. Filaretov ◽  
A. A. Protsenko

The paper is devoted to the problem of fault identification in technical systems described by non-stationary nonlinear dynamic equations under unmatched disturbances. To solve the problem, sliding mode observers are used. The suggested ap- proach is based on the model of the original system of minimal dimension having different sensitivity to the faults and distur- bances in contrast to the traditional approaches to sliding observer design which are based on the original system. Additionally it is assumed that matrices describing such a model have the canonical form and are constant. The main purpose of using such a model is possibility to take into account the non-stationary feature of the systems. As a result, the model has stationary dynamic and non-stationary additional term that allows to promote sliding mode design. Besides, the new approach to design sliding mode observers is suggested. The peculiarity of this approach is that it does not require that original systems should be minimum phase and detectable. According to the traditional approaches stability of the observer is provided by minimum phase and detectability properties. In our approach, stability of the observer is achieved due to the canonical form of the matrices describing the model. In addition, the matching condition is not necessary. This allows to extend a class of systems for which sliding mode observers can be designed. Theoretical results are illustrated by practical example of electric servoactuator.


Sign in / Sign up

Export Citation Format

Share Document