Probabilistic Construction of Small Strongly Sum-Free Sets via Large Sidon Sets

Author(s):  
Andreas Baltz ◽  
Tomasz Schoen ◽  
Anand Srivastav

2000 ◽  
Vol 86 (2) ◽  
pp. 171-176
Author(s):  
Andreas Schoen ◽  
Tomasz Srivastav ◽  
Anand Baltz


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Claude Carlet ◽  
Stjepan Picek

<p style='text-indent:20px;'>We derive necessary conditions related to the notions, in additive combinatorics, of Sidon sets and sum-free sets, on those exponents <inline-formula><tex-math id="M1">\begin{document}$ d\in {\mathbb Z}/(2^n-1){\mathbb Z} $\end{document}</tex-math></inline-formula>, which are such that <inline-formula><tex-math id="M2">\begin{document}$ F(x) = x^d $\end{document}</tex-math></inline-formula> is an APN function over <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb F}_{2^n} $\end{document}</tex-math></inline-formula> (which is an important cryptographic property). We study to what extent these new conditions may speed up the search for new APN exponents <inline-formula><tex-math id="M4">\begin{document}$ d $\end{document}</tex-math></inline-formula>. We summarize all the necessary conditions that an exponent must satisfy for having a chance of being an APN, including the new conditions presented in this work. Next, we give results up to <inline-formula><tex-math id="M5">\begin{document}$ n = 48 $\end{document}</tex-math></inline-formula>, providing the number of exponents satisfying all the conditions for a function to be APN.</p><p style='text-indent:20px;'>We also show a new connection between APN exponents and Dickson polynomials: <inline-formula><tex-math id="M6">\begin{document}$ F(x) = x^d $\end{document}</tex-math></inline-formula> is APN if and only if the reciprocal polynomial of the Dickson polynomial of index <inline-formula><tex-math id="M7">\begin{document}$ d $\end{document}</tex-math></inline-formula> is an injective function from <inline-formula><tex-math id="M8">\begin{document}$ \{y\in {\Bbb F}_{2^n}^*; tr_n(y) = 0\} $\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id="M9">\begin{document}$ {\Bbb F}_{2^n}\setminus \{1\} $\end{document}</tex-math></inline-formula>. This also leads to a new and simple connection between Reversed Dickson polynomials and reciprocals of Dickson polynomials in characteristic 2 (which generalizes to every characteristic thanks to a small modification): the squared Reversed Dickson polynomial of some index and the reciprocal of the Dickson polynomial of the same index are equal.</p>



2020 ◽  
Vol 52 (4) ◽  
pp. 1249-1283
Author(s):  
Masatoshi Kimura ◽  
Tetsuya Takine

AbstractThis paper considers ergodic, continuous-time Markov chains $\{X(t)\}_{t \in (\!-\infty,\infty)}$ on $\mathbb{Z}^+=\{0,1,\ldots\}$ . For an arbitrarily fixed $N \in \mathbb{Z}^+$ , we study the conditional stationary distribution $\boldsymbol{\pi}(N)$ given the Markov chain being in $\{0,1,\ldots,N\}$ . We first characterize $\boldsymbol{\pi}(N)$ via systems of linear inequalities and identify simplices that contain $\boldsymbol{\pi}(N)$ , by examining the $(N+1) \times (N+1)$ northwest corner block of the infinitesimal generator $\textbf{\textit{Q}}$ and the subset of the first $N+1$ states whose members are directly reachable from at least one state in $\{N+1,N+2,\ldots\}$ . These results are closely related to the augmented truncation approximation (ATA), and we provide some practical implications for the ATA. Next we consider an extension of the above results, using the $(K+1) \times (K+1)$ ( $K > N$ ) northwest corner block of $\textbf{\textit{Q}}$ and the subset of the first $K+1$ states whose members are directly reachable from at least one state in $\{K+1,K+2,\ldots\}$ . Furthermore, we introduce new state transition structures called (K, N)-skip-free sets, using which we obtain the minimum convex polytope that contains $\boldsymbol{\pi}(N)$ .



Author(s):  
Endre Csóka ◽  
Łukasz Grabowski

Abstract We introduce and study analogues of expander and hyperfinite graph sequences in the context of directed acyclic graphs, which we call ‘extender’ and ‘hypershallow’ graph sequences, respectively. Our main result is a probabilistic construction of non-hypershallow graph sequences.





2005 ◽  
Vol 90 (02) ◽  
pp. 273-296 ◽  
Author(s):  
E. Szemerédi ◽  
V. H. Vu


1999 ◽  
Vol 8 (3) ◽  
pp. 277-280 ◽  
Author(s):  
TOMASZ SCHOEN
Keyword(s):  
Free Set ◽  

A set A is called universal sum-free if, for every finite 0–1 sequence χ = (e1, …, en), either(i) there exist i, j, where 1[les ]j<i[les ]n, such that ei = ej = 1 and i − j∈A, or(ii) there exists t∈N such that, for 1[les ]i[les ]n, we have t + i∈A if and only if ei = 1.It is proved that the density of each universal sum-free set is zero, which settles a problem of Cameron.



2021 ◽  
Vol 183 ◽  
pp. 105490
Author(s):  
Yoshiharu Kohayakawa ◽  
Sang June Lee ◽  
Carlos Gustavo Moreira ◽  
Vojtěch Rödl
Keyword(s):  


2010 ◽  
Vol 39 (6) ◽  
Author(s):  
Emerson Carmelo ◽  
Candido Mendonça


Sign in / Sign up

Export Citation Format

Share Document