scholarly journals Explicit Memory Schemes for Evolutionary Algorithms in Dynamic Environments

Author(s):  
Shengxiang Yang
2008 ◽  
Vol 16 (3) ◽  
pp. 385-416 ◽  
Author(s):  
Shengxiang Yang

In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.


2015 ◽  
Vol 24 (01) ◽  
pp. 1450013 ◽  
Author(s):  
Maury Meirelles Gouvêa ◽  
Aluizio F. R. Araújo

Evolutionary algorithms (EAs) can be used to find solutions in dynamic environments. In such cases, after a change in the environment, EAs can either be restarted or they can take advantage of previous knowledge to resume the evolutionary process. The second option tends to be faster and demands less computational effort. The preservation or growth of population diversity is one of the strategies used to advance the evolutionary process after modifications to the environment. We propose a new adaptive method to control population diversity based on a model-reference. The EA evolves the population whereas a control strategy, independently, handles the population diversity. Thus, the adaptive EA evolves a population that follows a diversity-reference model. The proposed model, called the Diversity-Reference Adaptive Control Evolutionary Algorithm (DRAC), aims to maintain or increase the population diversity, thus avoiding premature convergence, and assuring exploration of the solution space during the whole evolutionary process. We also propose a diversity models based on the dynamics of heterozygosity of the population, as models to be tracked by the diversity control. The performance of DRAC showed promising results when compared with the standard genetic algorithm and six other adaptive evolutionary algorithms in 14 different experiments with three different types of environments.


Sign in / Sign up

Export Citation Format

Share Document