Author(s):  
S. G. Rajeev

The initial value problem of the incompressible Navier–Stokes equations is explained. Leray’s classic study of it (using Picard iteration) is simplified and described in the language of physics. The ideas of Lebesgue and Sobolev norms are explained. The L2 norm being the energy, cannot increase. This gives sufficient control to establish existence, regularity and uniqueness in two-dimensional flow. The L3 norm is not guaranteed to decrease, so this strategy fails in three dimensions. Leray’s proof of regularity for a finite time is outlined. His attempts to construct a scale-invariant singular solution, and modern work showing this is impossible, are then explained. The physical consequences of a negative answer to the regularity of Navier–Stokes solutions are explained. This chapter is meant as an introduction, for physicists, to a difficult field of analysis.


Author(s):  
Alexander Haberl ◽  
Dirk Praetorius ◽  
Stefan Schimanko ◽  
Martin Vohralík

AbstractWe consider a second-order elliptic boundary value problem with strongly monotone and Lipschitz-continuous nonlinearity. We design and study its adaptive numerical approximation interconnecting a finite element discretization, the Banach–Picard linearization, and a contractive linear algebraic solver. In particular, we identify stopping criteria for the algebraic solver that on the one hand do not request an overly tight tolerance but on the other hand are sufficient for the inexact (perturbed) Banach–Picard linearization to remain contractive. Similarly, we identify suitable stopping criteria for the Banach–Picard iteration that leave an amount of linearization error that is not harmful for the residual a posteriori error estimate to steer reliably the adaptive mesh-refinement. For the resulting algorithm, we prove a contraction of the (doubly) inexact iterates after some amount of steps of mesh-refinement/linearization/algebraic solver, leading to its linear convergence. Moreover, for usual mesh-refinement rules, we also prove that the overall error decays at the optimal rate with respect to the number of elements (degrees of freedom) added with respect to the initial mesh. Finally, we prove that our fully adaptive algorithm drives the overall error down with the same optimal rate also with respect to the overall algorithmic cost expressed as the cumulated sum of the number of mesh elements over all mesh-refinement, linearization, and algebraic solver steps. Numerical experiments support these theoretical findings and illustrate the optimal overall algorithmic cost of the fully adaptive algorithm on several test cases.


2018 ◽  
Vol 51 (19) ◽  
pp. 64-67
Author(s):  
Maike Naber ◽  
Friedrich von Haeseler ◽  
Nadine Rudolph ◽  
Heinrich J. Huber ◽  
Rolf Findeisen

2021 ◽  
Author(s):  
S.R. Zhu ◽  
L.Z. Wu ◽  
T. Ma ◽  
S.H. Li

Abstract The numerical solution of various systems of linear equations describing fluid infiltration uses the Picard iteration (PI). However, because many such systems are ill-conditioned, the solution process often has a poor convergence rate, making it very time-consuming. In this study, a control volume method based on non-uniform nodes is used to discretize the Richards equation, and adaptive relaxation is combined with a multistep preconditioner to improve the convergence rate of PI. The resulting adaptive relaxed PI with multistep preconditioner (MP(m)-ARPI) is used to simulate unsaturated flow in porous media. Three examples are used to verify the proposed schemes. The results show that MP(m)-ARPI can effectively reduce the condition number of the coefficient matrix for the system of linear equations. Compared with conventional PI, MP(m)-ARPI achieves faster convergence, higher computational efficiency, and enhanced robustness. These results demonstrate that improved scheme is an excellent prospect for simulating unsaturated flow in porous media.


2009 ◽  
Vol 29 (2) ◽  
pp. 419-431 ◽  
Author(s):  
E. DE SIMONE ◽  
A. KUPIAINEN

AbstractWe give an elementary proof of the analytic KAM theorem by reducing it to a Picard iteration of a certain PDE with quadratic nonlinearity, the so-called Polchinski renormalization group equation studied in quantum field theory.


2019 ◽  
Vol 24 (1) ◽  
pp. 311-331 ◽  
Author(s):  
Prashant Kumar ◽  
Carmen Rodrigo ◽  
Francisco J. Gaspar ◽  
Cornelis W. Oosterlee

AbstractWe present a multilevel Monte Carlo (MLMC) method for the uncertainty quantification of variably saturated porous media flow that is modeled using the Richards equation. We propose a stochastic extension for the empirical models that are typically employed to close the Richards equations. This is achieved by treating the soil parameters in these models as spatially correlated random fields with appropriately defined marginal distributions. As some of these parameters can only take values in a specific range, non-Gaussian models are utilized. The randomness in these parameters may result in path-wise highly nonlinear systems, so that a robust solver with respect to the random input is required. For this purpose, a solution method based on a combination of the modified Picard iteration and a cell-centered multigrid method for heterogeneous diffusion coefficients is utilized. Moreover, we propose a non-standard MLMC estimator to solve the resulting high-dimensional stochastic Richards equation. The improved efficiency of this multilevel estimator is achieved by parametric continuation that allows us to incorporate simpler nonlinear problems on coarser levels for variance reduction while the target strongly nonlinear problem is solved only on the finest level. Several numerical experiments are presented showing computational savings obtained by the new estimator compared with the original MC estimator.


Sign in / Sign up

Export Citation Format

Share Document