biochemical networks
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 90)

H-INDEX

55
(FIVE YEARS 5)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Simone G. Riva ◽  
Paolo Cazzaniga ◽  
Marco S. Nobile ◽  
Simone Spolaor ◽  
Leonardo Rundo ◽  
...  

Several software tools for the simulation and analysis of biochemical reaction networks have been developed in the last decades; however, assessing and comparing their computational performance in executing the typical tasks of computational systems biology can be limited by the lack of a standardized benchmarking approach. To overcome these limitations, we propose here a novel tool, named SMGen, designed to automatically generate synthetic models of reaction networks that, by construction, are characterized by relevant features (e.g., system connectivity and reaction discreteness) and non-trivial emergent dynamics of real biochemical networks. The generation of synthetic models in SMGen is based on the definition of an undirected graph consisting of a single connected component that, generally, results in a computationally demanding task; to speed up the overall process, SMGen exploits a main–worker paradigm. SMGen is also provided with a user-friendly graphical user interface, which allows the user to easily set up all the parameters required to generate a set of synthetic models with any number of reactions and species. We analysed the computational performance of SMGen by generating batches of symmetric and asymmetric reaction-based models (RBMs) of increasing size, showing how a different number of reactions and/or species affects the generation time. Our results show that when the number of reactions is higher than the number of species, SMGen has to identify and correct a large number of errors during the creation process of the RBMs, a circumstance that increases the running time. Still, SMGen can generate synthetic models with hundreds of species and reactions in less than 7 s.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carrie Deans

Anticipation is the act of using information about the past and present to make predictions about future scenarios. As a concept, it is predominantly associated with the psychology of the human mind; however, there is accumulating evidence that diverse taxa without complex neural systems, and even biochemical networks themselves, can respond to perceived future conditions. Although anticipatory processes, such as circadian rhythms, stress priming, and cephalic responses, have been extensively studied over the last three centuries, newer research on anticipatory genetic networks in microbial species shows that anticipatory processes are widespread, evolutionarily old, and not simply reserved for neurological complex organisms. Overall, data suggest that anticipatory responses represent a unique type of biological processes that can be distinguished based on their organizational properties and mechanisms. Unfortunately, an empirically based biologically explicit framework for describing anticipatory processes does not currently exist. This review attempts to fill this void by discussing the existing examples of anticipatory processes in non-cognitive organisms, providing potential criteria for defining anticipatory processes, as well as their putative mechanisms, and drawing attention to the often-overlooked role of anticipation in the evolution of physiological systems. Ultimately, a case is made for incorporating an anticipatory framework into the existing physiological paradigm to advance our understanding of complex biological processes.


Metabolomics ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Fotios Drenos

Abstract Introduction The study of lipoprotein metabolism at the population level can provide valuable information for the organisation of lipoprotein related processes in the body. To use this information towards interventional hypotheses generation and testing, we need to be able to identify the mechanistic connections among the large number of observed correlations between the measured components of the system. Objectives To use population level metabolomics information to gain insight on their biochemical networks and metabolism. Methods Genetic and metabolomics information for 230 metabolic measures, predominately lipoprotein related, from a targeted nuclear magnetic resonance approach, in two samples of an established European cohort, totalling more than 9400 individuals analysed using phenotypic and genetic correlations, as well as Mendelian Randomisation. Results More than 20,500 phenotypic correlations were identified in the data, with almost 2000 also showing evidence of strong genetic correlation. Mendelian randomisation, provided evidence for a causal effect between 9496 pairs of metabolic measures, mainly between lipoprotein traits. The results provide insights on the organisation of lipoproteins in three distinct classes, the heterogeneity between HDL particles, and the association, or lack of, between CLA, glycolysis markers, such as glucose and citrate, and glycoproteins with lipids subfractions. Two examples for the use of the approach in systems biology of lipoproteins are presented. Conclusions Genetic variation can be used to infer the underlying mechanisms for the associations between lipoproteins for hypothesis generation and confirmation, and, together with biological information, to map complex biological processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seirana Hashemi ◽  
Zahra Razaghi-Moghadam ◽  
Zoran Nikoloski

AbstractTrade-offs are inherent to biochemical networks governing diverse cellular functions, from gene expression to metabolism. Yet, trade-offs between fluxes of biochemical reactions in a metabolic network have not been formally studied. Here, we introduce the concept of absolute flux trade-offs and devise a constraint-based approach, termed FluTO, to identify and enumerate flux trade-offs in a given genome-scale metabolic network. By employing the metabolic networks of Escherichia coli and Saccharomyces cerevisiae, we demonstrate that the flux trade-offs are specific to carbon sources provided but that reactions involved in the cofactor and prosthetic group biosynthesis are present in trade-offs across all carbon sources supporting growth. We also show that absolute flux trade-offs depend on the biomass reaction used to model the growth of Arabidopsis thaliana under different carbon and nitrogen conditions. The identified flux trade-offs reflect the tight coupling between nitrogen, carbon, and sulphur metabolisms in leaves of C3 plants. Altogether, FluTO provides the means to explore the space of alternative metabolic routes reflecting the constraints imposed by inherent flux trade-offs in large-scale metabolic networks.


2021 ◽  
Vol 14 ◽  
Author(s):  
Polina Shichkova ◽  
Jay S. Coggan ◽  
Henry Markram ◽  
Daniel Keller

Accurate molecular concentrations are essential for reliable analyses of biochemical networks and the creation of predictive models for molecular and systems biology, yet protein and metabolite concentrations used in such models are often poorly constrained or irreproducible. Challenges of using data from different sources include conflicts in nomenclature and units, as well as discrepancies in experimental procedures, data processing and implementation of the model. To obtain a consistent estimate of protein and metabolite levels, we integrated and normalized data from a large variety of sources to calculate Adjusted Molecular Concentrations. We found a high degree of reproducibility and consistency of many molecular species across brain regions and cell types, consistent with tight homeostatic regulation. We demonstrated the value of this normalization with differential protein expression analyses related to neurodegenerative diseases, brain regions and cell types. We also used the results in proof-of-concept simulations of brain energy metabolism. The standardized Brain Molecular Atlas overcomes the obstacles of missing or inconsistent data to support systems biology research and is provided as a resource for biomolecular modeling.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Muhammad Aamer Rashid ◽  
Sarfraz Ahmad ◽  
Muhammad Kamran Siddiqui ◽  
Shazia Manzoor ◽  
Mlamuli Dhlamini

Biological proceedings are well characterized by solid illustrations for communication networks. The framework of biological networks has to be considered together with the expansion of infectious diseases like coronavirus. Also, the graph entropies have established themselves as the information theoretic measure to evaluate the architectural information of biological networks. In this article, we examined conclusive biochemical networks like t -level hypertrees along with the corona product of hypertrees with path. We computed eccentricity-based indices for the depiction of aforementioned theoretical frameworks of biochemical networks. Furthermore, explicit depiction of the graph entropies with these indices is also measured.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009410
Author(s):  
Andrea Tangherloni ◽  
Marco S. Nobile ◽  
Paolo Cazzaniga ◽  
Giulia Capitoli ◽  
Simone Spolaor ◽  
...  

Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of fruitful outcomes. On the one hand, detailed mechanistic models can involve hundreds or thousands of molecular species and their intermediate complexes, as well as hundreds or thousands of chemical reactions, a situation generally occurring in rule-based modeling. On the other hand, the computational analysis of a model typically requires the execution of a large number of simulations for its calibration or to test the effect of perturbations. As a consequence, the computational capabilities of modern Central Processing Units can be easily overtaken, possibly making the modeling of biochemical networks a worthless or ineffective effort. To the aim of overcoming the limitations of the current state-of-the-art simulation approaches, we present in this paper FiCoS, a novel “black-box” deterministic simulator that effectively realizes both a fine-grained and a coarse-grained parallelization on Graphics Processing Units. In particular, FiCoS exploits two different integration methods, namely, the Dormand–Prince and the Radau IIA, to efficiently solve both non-stiff and stiff systems of coupled Ordinary Differential Equations. We tested the performance of FiCoS against different deterministic simulators, by considering models of increasing size and by running analyses with increasing computational demands. FiCoS was able to dramatically speedup the computations up to 855×, showing to be a promising solution for the simulation and analysis of large-scale models of complex biological processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anika Küken ◽  
Philipp Wendering ◽  
Damoun Langary ◽  
Zoran Nikoloski

AbstractLarge-scale biochemical models are of increasing sizes due to the consideration of interacting organisms and tissues. Model reduction approaches that preserve the flux phenotypes can simplify the analysis and predictions of steady-state metabolic phenotypes. However, existing approaches either restrict functionality of reduced models or do not lead to significant decreases in the number of modelled metabolites. Here, we introduce an approach for model reduction based on the structural property of balancing of complexes that preserves the steady-state fluxes supported by the network and can be efficiently determined at genome scale. Using two large-scale mass-action kinetic models of Escherichia coli, we show that our approach results in a substantial reduction of 99% of metabolites. Applications to genome-scale metabolic models across kingdoms of life result in up to 55% and 85% reduction in the number of metabolites when arbitrary and mass-action kinetics is assumed, respectively. We also show that predictions of the specific growth rate from the reduced models match those based on the original models. Since steady-state flux phenotypes from the original model are preserved in the reduced, the approach paves the way for analysing other metabolic phenotypes in large-scale biochemical networks.


2021 ◽  
Vol 18 (181) ◽  
pp. 20210331
Author(s):  
Tamara Kurdyaeva ◽  
Andreas Milias-Argeitis

Differential equation models of biochemical networks are frequently associated with a large degree of uncertainty in parameters and/or initial conditions. However, estimating the impact of this uncertainty on model predictions via Monte Carlo simulation is computationally demanding. A more efficient approach could be to track a system of low-order statistical moments of the state. Unfortunately, when the underlying model is nonlinear, the system of moment equations is infinite-dimensional and cannot be solved without a moment closure approximation which may introduce bias in the moment dynamics. Here, we present a new method to study the time evolution of the desired moments for nonlinear systems with polynomial rate laws. Our approach is based on solving a system of low-order moment equations by substituting the higher-order moments with Monte Carlo-based estimates from a small number of simulations, and using an extended Kalman filter to counteract Monte Carlo noise. Our algorithm provides more accurate and robust results compared to traditional Monte Carlo and moment closure techniques, and we expect that it will be widely useful for the quantification of uncertainty in biochemical model predictions.


Author(s):  
Cailan Jeynes-Smith ◽  
Robyn P. Araujo

Switch-like behaviours in biochemical networks are of fundamental significance in biological signal processing, and exist as two distinct types: ultra-sensitivity and bistability. Here we propose two new models of a reversible covalent-modification cycle with positive autoregulation (PAR), a motif structure that is thought to be capable of both ultrasensitivity and bistability in different parameter regimes. These new models appeal to a modelling framework that we call complex-complete , which accounts fully for the molecular complexities of the underlying signalling mechanisms. Each of the two new models encodes a specific molecular mechanism for PAR. We demonstrate that the modelling simplifications for PAR models that have been used in previous work, which rely on Michaelian approximations, are unable to accurately recapitulate the qualitative signalling responses supported by our detailed models. Strikingly, we show that complex-complete PAR models are capable of new qualitative responses such as one-way switches and a ‘prozone’ effect, depending on the specific PAR-encoding mechanism, which are not supported by Michaelian simplifications. Our results highlight the critical importance of accurately representing the molecular details of biochemical signalling mechanisms, and strongly suggest that the Michaelian approximation is inadequate for predictive models of enzyme-mediated chemical reactions with added regulations such as PAR.


Sign in / Sign up

Export Citation Format

Share Document