iteration scheme
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 84)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 40 (1) ◽  
pp. 1-29
Author(s):  
Hanrui Wu ◽  
Qingyao Wu ◽  
Michael K. Ng

Domain adaptation aims at improving the performance of learning tasks in a target domain by leveraging the knowledge extracted from a source domain. To this end, one can perform knowledge transfer between these two domains. However, this problem becomes extremely challenging when the data of these two domains are characterized by different types of features, i.e., the feature spaces of the source and target domains are different, which is referred to as heterogeneous domain adaptation (HDA). To solve this problem, we propose a novel model called Knowledge Preserving and Distribution Alignment (KPDA), which learns an augmented target space by jointly minimizing information loss and maximizing domain distribution alignment. Specifically, we seek to discover a latent space, where the knowledge is preserved by exploiting the Laplacian graph terms and reconstruction regularizations. Moreover, we adopt the Maximum Mean Discrepancy to align the distributions of the source and target domains in the latent space. Mathematically, KPDA is formulated as a minimization problem with orthogonal constraints, which involves two projection variables. Then, we develop an algorithm based on the Gauss–Seidel iteration scheme and split the problem into two subproblems, which are solved by searching algorithms based on the Barzilai–Borwein (BB) stepsize. Promising results demonstrate the effectiveness of the proposed method.


Author(s):  
Pascal Heid ◽  
Thomas P. Wihler

The classical Kacanov scheme for the solution of nonlinear variational problems can be interpreted as a fixed point iteration method that updates a given approximation by solving a linear problem in each step. Based on this observation, we introduce a modified Kacanov method, which allows for (adaptive) damping, and, thereby, to derive a new convergence analysis under more general assumptions and for a wider range of applications. For instance, in the specific context of quasilinear diffusion models, our new approach does no longer require a standard monotonicity condition on the nonlinear diffusion coefficient to hold. Moreover, we propose two different adaptive strategies for the practical selection of the damping parameters involved.


Author(s):  
Arunselvan Ramaswamy ◽  
Shalabh Bhatnagar

In this paper, we consider the stochastic iterative counterpart of the value iteration scheme wherein only noisy and possibly biased approximations of the Bellman operator are available. We call this counterpart the approximate value iteration (AVI) scheme. Neural networks are often used as function approximators, in order to counter Bellman’s curse of dimensionality. In this paper, they are used to approximate the Bellman operator. Because neural networks are typically trained using sample data, errors and biases may be introduced. The design of AVI accounts for implementations with biased approximations of the Bellman operator and sampling errors. We present verifiable sufficient conditions under which AVI is stable (almost surely bounded) and converges to a fixed point of the approximate Bellman operator. To ensure the stability of AVI, we present three different yet related sets of sufficient conditions that are based on the existence of an appropriate Lyapunov function. These Lyapunov function–based conditions are easily verifiable and new to the literature. The verifiability is enhanced by the fact that a recipe for the construction of the necessary Lyapunov function is also provided. We also show that the stability analysis of AVI can be readily extended to the general case of set-valued stochastic approximations. Finally, we show that AVI can also be used in more general circumstances, that is, for finding fixed points of contractive set-valued maps.


2021 ◽  
Vol Volume 1 ◽  
Author(s):  
Jian-Guo Liu ◽  
Ziheng Wang ◽  
Yantong Xie ◽  
Yuan Zhang ◽  
Zhennan Zhou

In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to establish the convergence relationship between the regularized process and the original one where in the regularized process, the jump mechanism is replaced by a Poisson dynamic, and jump intensity within the classically forbidden domain goes to infinity as the regularization parameter vanishes. On the macroscopic level, the Fokker-Planck equation for the process with random discharges (i.e. Poisson jumps) are defined on the whole space, while the equation for the limit process is on the half space. However, with the iteration scheme, the difficulty due to the domain differences has been greatly mitigated and the convergence for the stochastic process and the firing rates can be established. Moreover, we find a polynomial-order convergence for the distribution by a re-normalization argument in probability theory. Finally, by numerical experiments, we quantitatively explore the rate and the asymptotic behavior of the convergence for both linear and nonlinear models.


CALCOLO ◽  
2021 ◽  
Vol 59 (1) ◽  
Author(s):  
Pascal Heid ◽  
Endre Süli

AbstractWe explore the convergence rate of the Kačanov iteration scheme for different models of shear-thinning fluids, including Carreau and power-law type explicit quasi-Newtonian constitutive laws. It is shown that the energy difference contracts along the sequence generated by the iteration. In addition, an a posteriori computable contraction factor is proposed, which improves, on finite-dimensional Galerkin spaces, previously derived bounds on the contraction factor in the context of the power-law model. Significantly, this factor is shown to be independent of the choice of the cut-off parameters whose use was proposed in the literature for the Kačanov iteration applied to the power-law model. Our analytical findings are confirmed by a series of numerical experiments.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012013
Author(s):  
M Sablin

Abstract The method proposed is intended to solve implicit conservative operator difference schemes for a grid initial-boundary value problems on a simplex grid for a system of equations of gas dynamics in the mixed Euler-Lagrangian variables. To find a solution to such a scheme at a time step, it is represented as a single equation for a nonlinear function of two arguments from space – the direct product of the grid spaces of gas-dynamic quantities. To solve such an equation, a combination of the generalized Gauss-Seidel iterative method (external iterations) and an implicit two-layer iteration scheme (internal iterations at each external iteration) is used. The feature of the method is that, the equation, which is solved by internal iterations, is obtained from the equation of the difference scheme using symmetrization – such a non-degenerate linear transformation that the function in this equation has a self-adjoint positive Frechet derivative.


2021 ◽  
Vol 11 (1) ◽  
pp. 620-635
Author(s):  
Xiaofeng Zhao ◽  
Hengyan Li ◽  
Weiping Yan

Abstract This paper considers an initial-boundary value problem for a class of singular quasilinear second-order ordinary differential equations with the constraint condition stemming from fluid mechanics. We prove that the existence of positive Sobolev regular solutions for this kind of singular quasilinear ODEs by means of a suitable Nash-Moser iteration scheme Meanwhile, asymptotic expansion of those positive solutions is shown.


2021 ◽  
Author(s):  
K. Esler ◽  
R. Gandham ◽  
L. Patacchini ◽  
T. Garipov ◽  
P. Panfili ◽  
...  

Abstract Recently, graphics processing units (GPUs) have been demonstrated to provide a significant performance benefit for black-oil reservoir simulation, as well as flash calculations that serve an important role in compositional simulation. A comprehensive approach to compositional simulation based on GPUs had yet to emerge, and some questions remained as to whether the benefits observed in black-oil simulation would persist with a more complex fluid description. We present our positive answer to this question through the extension of a commercial GPU-based black-oil simulator to include a compositional description based on standard cubic equations of state. We describe the motivations for the formulation we select to make optimal use of GPU characteristics, including choice of primary variables and iteration scheme. We then describe performance results on an example sector model and simplified synthetic case designed to allow a detailed examination of scaling with respect to the number of hydrocarbon components and model size, as well as number of processors. We finally show results from two complex asset models (synthetic and real) and examine performance scaling with respect to GPU generation, demonstrating that performance correlates strongly with GPU memory bandwidth.


Sign in / Sign up

Export Citation Format

Share Document