scholarly journals A parametric acceleration of multilevel Monte Carlo convergence for nonlinear variably saturated flow

2019 ◽  
Vol 24 (1) ◽  
pp. 311-331 ◽  
Author(s):  
Prashant Kumar ◽  
Carmen Rodrigo ◽  
Francisco J. Gaspar ◽  
Cornelis W. Oosterlee

AbstractWe present a multilevel Monte Carlo (MLMC) method for the uncertainty quantification of variably saturated porous media flow that is modeled using the Richards equation. We propose a stochastic extension for the empirical models that are typically employed to close the Richards equations. This is achieved by treating the soil parameters in these models as spatially correlated random fields with appropriately defined marginal distributions. As some of these parameters can only take values in a specific range, non-Gaussian models are utilized. The randomness in these parameters may result in path-wise highly nonlinear systems, so that a robust solver with respect to the random input is required. For this purpose, a solution method based on a combination of the modified Picard iteration and a cell-centered multigrid method for heterogeneous diffusion coefficients is utilized. Moreover, we propose a non-standard MLMC estimator to solve the resulting high-dimensional stochastic Richards equation. The improved efficiency of this multilevel estimator is achieved by parametric continuation that allows us to incorporate simpler nonlinear problems on coarser levels for variance reduction while the target strongly nonlinear problem is solved only on the finest level. Several numerical experiments are presented showing computational savings obtained by the new estimator compared with the original MC estimator.

2007 ◽  
Vol 135 (1) ◽  
pp. 186-202 ◽  
Author(s):  
T. M. Chin ◽  
M. J. Turmon ◽  
J. B. Jewell ◽  
M. Ghil

Abstract Monte Carlo computational methods have been introduced into data assimilation for nonlinear systems in order to alleviate the computational burden of updating and propagating the full probability distribution. By propagating an ensemble of representative states, algorithms like the ensemble Kalman filter (EnKF) and the resampled particle filter (RPF) rely on the existing modeling infrastructure to approximate the distribution based on the evolution of this ensemble. This work presents an ensemble-based smoother that is applicable to the Monte Carlo filtering schemes like EnKF and RPF. At the minor cost of retrospectively updating a set of weights for ensemble members, this smoother has demonstrated superior capabilities in state tracking for two highly nonlinear problems: the double-well potential and trivariate Lorenz systems. The algorithm does not require retrospective adaptation of the ensemble members themselves, and it is thus suited to a streaming operational mode. The accuracy of the proposed backward-update scheme in estimating non-Gaussian distributions is evaluated by comparison to the more accurate estimates provided by a Markov chain Monte Carlo algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
H. L. Qu ◽  
Y. Wu ◽  
B. K. Zhang ◽  
Q. D. Hu ◽  
Z. L. Xiao

A quasistatic simulation of highly nonlinear problems under fault movements was carried out using the EXPLICIT module of ABAQUS. Combined with the secondary development program of the software, the application of the strain softening Mohr–Coulomb model in the simulation was realized. Free field-fault systems were simulated with two types of fault types (normal and reverse faults), four fault dip angles (45°, 60°, 75°, and 90°), and two kinds of soil (sand and clay). Moreover, the rupture laws and sensitivities of the sand and clay were studied with different soil thicknesses and different fault dip angles in the free field. The results show that the width of the ground zone with obvious deformation, which represents the point of the fault outcrop, the critical displacement of the fault, and the rupture characteristics of the overlying soil are closely related to the fault type and soil parameters. The critical displacement of the reverse fault is larger than that of the normal fault. The width of the ground zone with obvious deformation varies from 0.65 to 1.3 and does not exhibit a regular relationship with the type of soil. Compared with a normal fault, the rupture of a reverse fault is not prone to exposure at the surface.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1192-1203 ◽  
Author(s):  
A.. Alkhatib ◽  
M.. Babaei

Summary Reservoir heterogeneity can be detrimental to the success of surfactant/polymer enhanced-oil-recovery (EOR) processes. Therefore, it is important to evaluate the effect of uncertainty in reservoir heterogeneity on the performance of surfactant/polymer EOR. Usually, a Monte Carlo sampling approach is used, in which a number of stochastic reservoir-model realizations are generated and then numerical simulation is performed to obtain a certain objective function, such as the recovery factor. However, Monte Carlo simulation (MCS) has a slow convergence rate and requires a large number of samples to produce accurate results. This can be computationally expensive when using large complex reservoir models. This study applies a multiscale approach to improve the efficiency of uncertainty quantification. This method is known as the multilevel Monte Carlo (MLMC) method. This method comprises performing a small number of expensive simulations on the fine-scale model and a large number of less-expensive simulations on coarser upscaled models, and then combining the results to produce the quantities of interest. The purpose of this method is to reduce computational cost while maintaining the accuracy of the fine-scale model. The results of this approach are compared with a reference MCS, assuming a large number of simulations on the fine-scale model. Other advantages of the MLMC method are its nonintrusiveness and its scalability to incorporate an increasing number of uncertainties. This study uses the MLMC method to efficiently quantify the effect of uncertainty in heterogeneity on the recovery factor of a chemical EOR process, specifically surfactant/polymer flooding. The permeability field is assumed to be the random input. This method is first demonstrated by use of a Gaussian 3D reservoir model. Different coarsening algorithms are used and compared, such as the renormalization method and the pressure-solver method (PSM). The results are compared with running Monte Carlo for the fine-scale model while equating the computational cost for the MLMC method. Both of these results are then compared with the reference case, which uses a large number of runs of the fine-scale model. The method is then extended to a channelized non-Gaussian generated 3D reservoir model incorporating multiphase upscaling The results show that it is possible to robustly quantify spatial uncertainty for a surfactant/polymer EOR process while greatly reducing the computational requirement, up to two orders of magnitude compared with traditional Monte Carlo for both the Gaussian and non-Gaussian reservoir models. The method can be easily extended to other EOR processes to quantify spatial uncertainty, such as carbon dioxide (CO2) EOR. Other possible extensions of this method are also discussed.


2017 ◽  
Vol 6 (4) ◽  
pp. 121
Author(s):  
Hamid Reza Erfanian ◽  
Seyed Jaliledin Ghaznavi Bidgoli ◽  
Parvin Shakibaei

Monte Carlo simulation is one of the most common and popular method of options pricing. The advantages of this method are being easy to use, suitable for all kinds of standard and exotic options and also are suitable for higher dimensional problems. But on the other hand Monte Carlo variance convergence rate is which due to that it will have relatively slow convergence rate to answer the problems, as to achieve  accuracy when it has been d-dimensions, complexity is . For this purpose, several methods are provided in quasi Monte Carlo simulation to increase variance convergence rate as variance reduction techniques, so far. One of the latest presented methods is multilevel Monte Carlo that is introduced by Giles in 2008. This method not only reduces the complexity of computing amount  in use of Euler discretization scheme and the amount  in use of Milstein discretization scheme, but also has the ability to combine with other variance reduction techniques. In this paper, using Multilevel Monte Carlo method by taking Milstein discretization scheme, pricing spread option and compared complexity of computing with standard Monte Carlo method. The results of Multilevel Monte Carlo method in pricing spread options are better than standard Monte Carlo simulation.


2018 ◽  
Vol 482 (6) ◽  
pp. 627-630
Author(s):  
D. Belomestny ◽  
◽  
L. Iosipoi ◽  
N. Zhivotovskiy ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document