A Design of Reward Function Based on Knowledge in Multi-agent Learning

Author(s):  
Bo Fan ◽  
Jiexin Pu
Author(s):  
Thomas Recchia ◽  
Jae Chung ◽  
Kishore Pochiraju

As robotic systems become more prevalent, it is highly desirable for them to be able to operate in highly dynamic environments. A common approach is to use reinforcement learning to allow an agent controlling the robot to learn and adapt its behavior based on a reward function. This paper presents a novel multi-agent system that cooperates to control a single robot battle tank in a melee battle scenario, with no prior knowledge of its opponents’ strategies. The agents learn through reinforcement learning, and are loosely coupled by their reward functions. Each agent controls a different aspect of the robot’s behavior. In addition, the problem of delayed reward is addressed through a time-averaged reward applied to several sequential actions at once. This system was evaluated in a simulated melee combat scenario and was shown to learn to improve its performance over time. This was accomplished by each agent learning to pick specific battle strategies for each different opponent it faced.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Giuseppe Caso ◽  
Ozgu Alay ◽  
Guido Carlo Ferrante ◽  
Luca De Nardis ◽  
Maria-Gabriella Di Benedetto ◽  
...  

2021 ◽  
Vol 54 (5) ◽  
pp. 1-35
Author(s):  
Shubham Pateria ◽  
Budhitama Subagdja ◽  
Ah-hwee Tan ◽  
Chai Quek

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a set of important open problems is proposed to motivate the future research in HRL. Furthermore, we outline a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical applications of HRL in the Supplementary Material.


2017 ◽  
Vol 4 (3) ◽  
pp. 155-169 ◽  
Author(s):  
Trevor R. Caskey ◽  
James S. Wasek ◽  
Anna Y. Franz

2021 ◽  
Vol 16 (4) ◽  
pp. 54-69
Author(s):  
Yaqing Hou ◽  
Xiangchao Yu ◽  
Yifeng Zeng ◽  
Ziqi Wei ◽  
Haijun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document