Multi-agent Learning Algorithms

Author(s):  
Yoav Shoham ◽  
Rob Powers
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Giuseppe Caso ◽  
Ozgu Alay ◽  
Guido Carlo Ferrante ◽  
Luca De Nardis ◽  
Maria-Gabriella Di Benedetto ◽  
...  

2015 ◽  
Vol 53 ◽  
pp. 659-697 ◽  
Author(s):  
Daan Bloembergen ◽  
Karl Tuyls ◽  
Daniel Hennes ◽  
Michael Kaisers

The interaction of multiple autonomous agents gives rise to highly dynamic and nondeterministic environments, contributing to the complexity in applications such as automated financial markets, smart grids, or robotics. Due to the sheer number of situations that may arise, it is not possible to foresee and program the optimal behaviour for all agents beforehand. Consequently, it becomes essential for the success of the system that the agents can learn their optimal behaviour and adapt to new situations or circumstances. The past two decades have seen the emergence of reinforcement learning, both in single and multi-agent settings, as a strong, robust and adaptive learning paradigm. Progress has been substantial, and a wide range of algorithms are now available. An important challenge in the domain of multi-agent learning is to gain qualitative insights into the resulting system dynamics. In the past decade, tools and methods from evolutionary game theory have been successfully employed to study multi-agent learning dynamics formally in strategic interactions. This article surveys the dynamical models that have been derived for various multi-agent reinforcement learning algorithms, making it possible to study and compare them qualitatively. Furthermore, new learning algorithms that have been introduced using these evolutionary game theoretic tools are reviewed. The evolutionary models can be used to study complex strategic interactions. Examples of such analysis are given for the domains of automated trading in stock markets and collision avoidance in multi-robot systems. The paper provides a roadmap on the progress that has been achieved in analysing the evolutionary dynamics of multi-agent learning by highlighting the main results and accomplishments.


2011 ◽  
Vol 40 ◽  
pp. 571-598 ◽  
Author(s):  
I. A. Kash ◽  
E. J. Friedman ◽  
J. Y. Halpern

In large systems, it is important for agents to learn to act effectively, but sophisticated multi-agent learning algorithms generally do not scale. An alternative approach is to find restricted classes of games where simple, efficient algorithms converge. It is shown that stage learning efficiently converges to Nash equilibria in large anonymous games if best-reply dynamics converge. Two features are identified that improve convergence. First, rather than making learning more difficult, more agents are actually beneficial in many settings. Second, providing agents with statistical information about the behavior of others can significantly reduce the number of observations needed.


2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


2021 ◽  
Vol 54 (5) ◽  
pp. 1-35
Author(s):  
Shubham Pateria ◽  
Budhitama Subagdja ◽  
Ah-hwee Tan ◽  
Chai Quek

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a set of important open problems is proposed to motivate the future research in HRL. Furthermore, we outline a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical applications of HRL in the Supplementary Material.


2017 ◽  
Vol 4 (3) ◽  
pp. 155-169 ◽  
Author(s):  
Trevor R. Caskey ◽  
James S. Wasek ◽  
Anna Y. Franz

Sign in / Sign up

Export Citation Format

Share Document