Revisiting Satisfiability and Model-Checking for CTLK with Synchrony and Perfect Recall

Author(s):  
Cătălin Dima
2019 ◽  
Vol 66 ◽  
pp. 197-223
Author(s):  
Michal Jozef Knapik ◽  
Etienne Andre ◽  
Laure Petrucci ◽  
Wojciech Jamroga ◽  
Wojciech Penczek

In this paper we investigate the Timed Alternating-Time Temporal Logic (TATL), a discrete-time extension of ATL. In particular, we propose, systematize, and further study semantic variants of TATL, based on different notions of a strategy. The notions are derived from different assumptions about the agents’ memory and observational capabilities, and range from timed perfect recall to untimed memoryless plans. We also introduce a new semantics based on counting the number of visits to locations during the play. We show that all the semantics, except for the untimed memoryless one, are equivalent when punctuality constraints are not allowed in the formulae. In fact, abilities in all those notions of a strategy collapse to the “counting” semantics with only two actions allowed per location. On the other hand, this simple pattern does not extend to the full TATL. As a consequence, we establish a hierarchy of TATL semantics, based on the expressivity of the underlying strategies, and we show when some of the semantics coincide. In particular, we prove that more compact representations are possible for a reasonable subset of TATL specifications, which should improve the efficiency of model checking and strategy synthesis.


Author(s):  
Laura Bozzelli ◽  
Bastien Maubert ◽  
Aniello Murano

We establish the precise complexity of the model checking problem for the main logics of knowledge and time. While this problem was known to be non-elementary for agents with perfect recall, with a number of exponentials that increases with the alternation of knowledge operators, the precise complexity of the problem when the maximum alternation is fixed has been an open problem for twenty years. We close it by establishing improved upper bounds for CTL* with knowledge, and providing matching lower bounds that also apply for epistemic extensions of LTL and CTL.


Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Aniello Murano ◽  
Sasha Rubin

We study a class of synchronous, perfect-recall multi-agent systemswith imperfect information and broadcasting (i.e., fully observableactions). We define an epistemic extension of strategy logic withincomplete information and the assumption of uniform and coherentstrategies. In this setting, we prove that the model checking problem,and thus rational synthesis, is decidable with non-elementarycomplexity. We exemplify the applicability of the framework on arational secret-sharing scenario.


Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Aniello Murano ◽  
Sasha Rubin

We develop a logic-based technique to analyse finite interactions in multi-agent systems. We introduce a semantics for Alternating-time Temporal Logic (for both perfect and imperfect recall) and its branching-time fragments in which paths are finite instead of infinite.  We study validities of these logics and present optimal algorithms for their model-checking problems in the perfect recall case.


Sign in / Sign up

Export Citation Format

Share Document