Dynamic Role Assignment for Large-Scale Multi-Agent Robotic Systems

Author(s):  
Van Tuan Le ◽  
Serge Stinckwich ◽  
Bouraqadi Noury ◽  
Arnaud Doniec
Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 631
Author(s):  
Chunyang Hu

In this paper, deep reinforcement learning (DRL) and knowledge transfer are used to achieve the effective control of the learning agent for the confrontation in the multi-agent systems. Firstly, a multi-agent Deep Deterministic Policy Gradient (DDPG) algorithm with parameter sharing is proposed to achieve confrontation decision-making of multi-agent. In the process of training, the information of other agents is introduced to the critic network to improve the strategy of confrontation. The parameter sharing mechanism can reduce the loss of experience storage. In the DDPG algorithm, we use four neural networks to generate real-time action and Q-value function respectively and use a momentum mechanism to optimize the training process to accelerate the convergence rate for the neural network. Secondly, this paper introduces an auxiliary controller using a policy-based reinforcement learning (RL) method to achieve the assistant decision-making for the game agent. In addition, an effective reward function is used to help agents balance losses of enemies and our side. Furthermore, this paper also uses the knowledge transfer method to extend the learning model to more complex scenes and improve the generalization of the proposed confrontation model. Two confrontation decision-making experiments are designed to verify the effectiveness of the proposed method. In a small-scale task scenario, the trained agent can successfully learn to fight with the competitors and achieve a good winning rate. For large-scale confrontation scenarios, the knowledge transfer method can gradually improve the decision-making level of the learning agent.


2021 ◽  
pp. 1-17
Author(s):  
Phillip Chesser ◽  
Peter Wang ◽  
Joshua Vaughan ◽  
Randall Lind ◽  
Brian Post

Abstract Concrete additive manufacturing (AM) is a growing field of research. However, on-site, large-scale concrete additive manufacturing requires motion platforms that are difficult to implement with conventional rigid-link robotic systems. This paper presents a new kinematic arrangement for a deployable cable-driven robot intended for on-site AM. The kinematics of this robot are examined to determine if they meet the requirements for this application, the wrench feasible workspace (WFW) is examined, and the physical implementation of a prototype is also presented. Data collected from the physical implementation of the proposed system is analyzed, and the results support its suitability for the intended application. The success of this system demonstrates that this kinematic arrangement is promising for future deployable AM systems.


2012 ◽  
Vol 505 ◽  
pp. 65-74
Author(s):  
Lin Lin Lu ◽  
Xin Ma ◽  
Ya Xuan Wang

In this paper, a job shop scheduling model combining MAS (Multi-Agent System) with GASA (Simulated Annealing-Genetic Algorithm) is presented. The proposed model is based on the E2GPGP (extended extended generalized partial global planning) mechanism and utilizes the advantages of static intelligence algorithms with dynamic MAS. A scheduling process from ‘initialized macro-scheduling’ to ‘repeated micro-scheduling’ is designed for large-scale complex problems to enable to implement an effective and widely applicable prototype system for the job shop scheduling problem (JSSP). Under a set of theoretic strategies in the GPGP which is summarized in detail, E2GPGP is also proposed further. The GPGP-cooperation-mechanism is simulated by using simulation software DECAF for the JSSP. The results show that the proposed model based on the E2GPGP-GASA not only improves the effectiveness, but also reduces the resource cost.


Sign in / Sign up

Export Citation Format

Share Document