Diophantine Approximation in Finite Characteristic

Author(s):  
Dinesh S. Thakur
Author(s):  
Jan Stevens

AbstractWe discuss a problem of Arnold, whether every function is stably equivalent to one which is non-degenerate for its Newton diagram. We argue that the answer is negative. We describe a method to make functions non-degenerate after stabilisation and give examples of singularities where this method does not work. We conjecture that they are in fact stably degenerate, that is not stably equivalent to non-degenerate functions.We review the various non-degeneracy concepts in the literature. For finite characteristic, we conjecture that there are no wild vanishing cycles for non-degenerate singularities. This implies that the simplest example of singularities with finite Milnor number, $$x^p+x^q$$ x p + x q in characteristic p, is not stably equivalent to a non-degenerate function. We argue that irreducible plane curves with an arbitrary number of Puiseux pairs (in characteristic zero) are stably non-degenerate. As the stabilisation involves many variables, it becomes very difficult to determine the Newton diagram in general, but the form of the equations indicates that the defining functions are non-degenerate.


2016 ◽  
Vol 59 (2) ◽  
pp. 349-357 ◽  
Author(s):  
STEPHEN HARRAP ◽  
NIKOLAY MOSHCHEVITIN

AbstractWe prove a result in the area of twisted Diophantine approximation related to the theory of Schmidt games. In particular, under certain restrictions we give an affirmative answer to the analogue in this setting of a famous conjecture of Schmidt from Diophantine approximation.


2008 ◽  
Vol 144 (1) ◽  
pp. 119-144 ◽  
Author(s):  
ARNAUD DURAND

AbstractA central problem motivated by Diophantine approximation is to determine the size properties of subsets of$\R^d$ ($d\in\N$)of the formwhere ‖⋅‖ denotes an arbitrary norm,Ia denumerable set, (xi,ri)i∈ Ia family of elements of$\R^d\$× (0, ∞) and ϕ a nonnegative nondecreasing function defined on [0, ∞). We show that ifFId, where Id denotes the identity function, has full Lebesgue measure in a given nonempty open subsetVof$\R^d\$, the setFϕbelongs to a class Gh(V) of sets with large intersection inVwith respect to a given gauge functionh. We establish that this class is closed under countable intersections and that each of its members has infinite Hausdorffg-measure for every gauge functiongwhich increases faster thanhnear zero. In particular, this yields a sufficient condition on a gauge functiongsuch that a given countable intersection of sets of the formFϕhas infinite Hausdorffg-measure. In addition, we supply several applications of our results to Diophantine approximation. For any nonincreasing sequenceψof positive real numbers converging to zero, we investigate the size and large intersection properties of the sets of all points that areψ-approximable by rationals, by rationals with restricted numerator and denominator and by real algebraic numbers. This enables us to refine the analogs of Jarník's theorem for these sets. We also study the approximation of zero by values of integer polynomials and deduce several new results concerning Mahler's and Koksma's classifications of real transcendental numbers.


2004 ◽  
Vol 32 (5) ◽  
pp. 1781-1804 ◽  
Author(s):  
Marc Raimondo ◽  
Iain M. Johnstone

Sign in / Sign up

Export Citation Format

Share Document