Evolutionary Model Selection in Bayesian Neural Networks

Author(s):  
Silvia Bozza ◽  
Pietro Mantovan ◽  
Rosa A. Schiavo
2021 ◽  
Author(s):  
Sebastian Burgstaller-Muehlbacher ◽  
Stephen M Crotty ◽  
Heiko A Schmidt ◽  
Tamara Drucks ◽  
Arndt von Haeseler

Selecting the best model of sequence evolution for a multiple sequence alignment (MSA) constitutes the first step of phylogenetic tree reconstruction. Common approaches for inferring nucleotide models typically apply maximum likelihood (ML) methods, with discrimination between models determined by one of several information criteria. This requires tree reconstruction and optimisation which can be computationally expensive. We demonstrate that neural networks can be used to perform model selection, without the need to reconstruct trees, optimise parameters, or calculate likelihoods. We introduce ModelRevelator, a model selection tool underpinned by two deep neural networks. The first neural network, NNmodelfind, recommends one of six commonly used models of sequence evolution, ranging in complexity from JC to GTR. The second, NNalphafind, recommends whether or not a Γ--distributed rate heterogeneous model should be incorporated, and if so, provides an estimate of the shape parameter, ɑ. Users can simply input an MSA into ModelRevelator, and swiftly receive output recommending the evolutionary model, inclusive of the presence or absence of rate heterogeneity, and an estimate of ɑ. We show that ModelRevelator performs comparably with likelihood-based methods over a wide range of parameter settings, with significant potential savings in computational effort. Further, we show that this performance is not restricted to the alignments on which the networks were trained, but is maintained even on unseen empirical data. ModelRevelator will be made freely available in the forthcoming version of IQ-Tree (http://www.iqtree.org), and we expect it will provide a valuable alternative for phylogeneticists, especially where traditional methods of model selection are computationally prohibitive.


2021 ◽  
Author(s):  
Jiaru Zhang ◽  
Yang Hua ◽  
Zhengui Xue ◽  
Tao Song ◽  
Chengyu Zheng ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Shubin Zheng ◽  
Qianwen Zhong ◽  
Lele Peng ◽  
Xiaodong Chai

Electricity load forecasting is becoming one of the key issues to solve energy crisis problem, and time-series Bayesian Neural Network is one popular method used in load forecast models. However, it has long running time and relatively strong dependence on time and weather factors at a residential level. To solve these problems, this article presents an improved Bayesian Neural Networks (IBNN) forecast model by augmenting historical load data as inputs based on simple feedforward structure. From the load time delays correlations and impact factors analysis, containing different inputs, number of hidden neurons, historic period of data, forecasting time range, and range requirement of sample data, some advices are given on how to better choose these factors. To validate the performance of improved Bayesian Neural Networks model, several residential sample datasets of one whole year from Ausgrid have been selected to build the improved Bayesian Neural Networks model. The results compared with the time-series load forecast model show that the improved Bayesian Neural Networks model can significantly reduce calculating time by more than 30 times and even when the time or meteorological factors are missing, it can still predict the load with a high accuracy. Compared with other widely used prediction methods, the IBNN also performs a better accuracy and relatively shorter computing time. This improved Bayesian Neural Networks forecasting method can be applied in residential energy management.


Sign in / Sign up

Export Citation Format

Share Document