maximum mean discrepancy
Recently Published Documents





2022 ◽  
Vol 40 (1) ◽  
pp. 1-29
Hanrui Wu ◽  
Qingyao Wu ◽  
Michael K. Ng

Domain adaptation aims at improving the performance of learning tasks in a target domain by leveraging the knowledge extracted from a source domain. To this end, one can perform knowledge transfer between these two domains. However, this problem becomes extremely challenging when the data of these two domains are characterized by different types of features, i.e., the feature spaces of the source and target domains are different, which is referred to as heterogeneous domain adaptation (HDA). To solve this problem, we propose a novel model called Knowledge Preserving and Distribution Alignment (KPDA), which learns an augmented target space by jointly minimizing information loss and maximizing domain distribution alignment. Specifically, we seek to discover a latent space, where the knowledge is preserved by exploiting the Laplacian graph terms and reconstruction regularizations. Moreover, we adopt the Maximum Mean Discrepancy to align the distributions of the source and target domains in the latent space. Mathematically, KPDA is formulated as a minimization problem with orthogonal constraints, which involves two projection variables. Then, we develop an algorithm based on the Gauss–Seidel iteration scheme and split the problem into two subproblems, which are solved by searching algorithms based on the Barzilai–Borwein (BB) stepsize. Promising results demonstrate the effectiveness of the proposed method.

Pierre Alquier ◽  
Badr-Eddine Chérief-Abdellatif ◽  
Alexis Derumigny ◽  
Jean-David Fermanian

Jieyang Peng ◽  
Andreas Kimmig ◽  
Zhibin Niu ◽  
Jiahai Wang ◽  
Xiufeng Liu ◽  

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 39
Qihang Huang ◽  
Yulin He ◽  
Zhexue Huang

To provide more external knowledge for training self-supervised learning (SSL) algorithms, this paper proposes a maximum mean discrepancy-based SSL (MMD-SSL) algorithm, which trains a well-performing classifier by iteratively refining the classifier using highly confident unlabeled samples. The MMD-SSL algorithm performs three main steps. First, a multilayer perceptron (MLP) is trained based on the labeled samples and is then used to assign labels to unlabeled samples. Second, the unlabeled samples are divided into multiple groups with the k-means clustering algorithm. Third, the maximum mean discrepancy (MMD) criterion is used to measure the distribution consistency between k-means-clustered samples and MLP-classified samples. The samples having a consistent distribution are labeled as highly confident samples and used to retrain the MLP. The MMD-SSL algorithm performs an iterative training until all unlabeled samples are consistently labeled. We conducted extensive experiments on 29 benchmark data sets to validate the rationality and effectiveness of the MMD-SSL algorithm. Experimental results show that the generalization capability of the MLP algorithm can gradually improve with the increase of labeled samples and the statistical analysis demonstrates that the MMD-SSL algorithm can provide better testing accuracy and kappa values than 10 other self-training and co-training SSL algorithms.

Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 392
Sinead A. Williamson ◽  
Jette Henderson

Understanding how two datasets differ can help us determine whether one dataset under-represents certain sub-populations, and provides insights into how well models will generalize across datasets. Representative points selected by a maximum mean discrepancy (MMD) coreset can provide interpretable summaries of a single dataset, but are not easily compared across datasets. In this paper, we introduce dependent MMD coresets, a data summarization method for collections of datasets that facilitates comparison of distributions. We show that dependent MMD coresets are useful for understanding multiple related datasets and understanding model generalization between such datasets.

Pei Cao ◽  
Chi Zhang ◽  
Xiangjun Lu ◽  
Dawu Gu

Deep learning (DL)-based techniques have recently proven to be very successful when applied to profiled side-channel attacks (SCA). In a real-world profiled SCA scenario, attackers gain knowledge about the target device by getting access to a similar device prior to the attack. However, most state-of-the-art literature performs only proof-of-concept attacks, where the traces intended for profiling and attacking are acquired consecutively on the same fully-controlled device. This paper reminds that even a small discrepancy between the profiling and attack traces (regarded as domain discrepancy) can cause a successful single-device attack to completely fail. To address the issue of domain discrepancy, we propose a Cross-Device Profiled Attack (CDPA), which introduces an additional fine-tuning phase after establishing a pretrained model. The fine-tuning phase is designed to adjust the pre-trained network, such that it can learn a hidden representation that is not only discriminative but also domain-invariant. In order to obtain domain-invariance, we adopt a maximum mean discrepancy (MMD) loss as a constraint term of the classic cross-entropy loss function. We show that the MMD loss can be easily calculated and embedded in a standard convolutional neural network. We evaluate our strategy on both publicly available datasets and multiple devices (eight Atmel XMEGA 8-bit microcontrollers and three SAKURA-G evaluation boards). The results demonstrate that CDPA can improve the performance of the classic DL-based SCA by orders of magnitude, which significantly eliminates the impact of domain discrepancy caused by different devices.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Jian Liu ◽  
Liming Feng

The reinforcement learning algorithms based on policy gradient may fall into local optimal due to gradient disappearance during the update process, which in turn affects the exploration ability of the reinforcement learning agent. In order to solve the above problem, in this paper, the cross-entropy method (CEM) in evolution policy, maximum mean difference (MMD), and twin delayed deep deterministic policy gradient algorithm (TD3) are combined to propose a diversity evolutionary policy deep reinforcement learning (DEPRL) algorithm. By using the maximum mean discrepancy as a measure of the distance between different policies, some of the policies in the population maximize the distance between them and the previous generation of policies while maximizing the cumulative return during the gradient update. Furthermore, combining the cumulative returns and the distance between policies as the fitness of the population encourages more diversity in the offspring policies, which in turn can reduce the risk of falling into local optimal due to the disappearance of the gradient. The results in the MuJoCo test environment show that DEPRL has achieved excellent performance on continuous control tasks; especially in the Ant-v2 environment, the return of DEPRL ultimately achieved a nearly 20% improvement compared to TD3.

Qiao Liu ◽  
Hui Xue

Unsupervised domain adaptation (UDA) has been received increasing attention since it does not require labels in target domain. Most existing UDA methods learn domain-invariant features by minimizing discrepancy distance computed by a certain metric between domains. However, these discrepancy-based methods cannot be robustly applied to unsupervised time series domain adaptation (UTSDA). That is because discrepancy metrics in these methods contain only low-order and local statistics, which have limited expression for time series distributions and therefore result in failure of domain matching. Actually, the real-world time series are always non-local distributions, i.e., with non-stationary and non-monotonic statistics. In this paper, we propose an Adversarial Spectral Kernel Matching (AdvSKM) method, where a hybrid spectral kernel network is specifically designed as inner kernel to reform the Maximum Mean Discrepancy (MMD) metric for UTSDA. The hybrid spectral kernel network can precisely characterize non-stationary and non-monotonic statistics in time series distributions. Embedding hybrid spectral kernel network to MMD not only guarantees precise discrepancy metric but also benefits domain matching. Besides, the differentiable architecture of the spectral kernel network enables adversarial kernel learning, which brings more discriminatory expression for discrepancy matching. The results of extensive experiments on several real-world UTSDA tasks verify the effectiveness of our proposed method.

Sign in / Sign up

Export Citation Format

Share Document