scholarly journals Generically nef vector bundles and geometric applications

Author(s):  
Thomas Peternell
Author(s):  
Ping Li ◽  
Fangyang Zheng

Abstract This article is concerned with Chern class and Chern number inequalities on polarized manifolds and nef vector bundles. For a polarized pair $(M,L)$ with $L$ very ample, our 1st main result is a family of sharp Chern class inequalities. Among them the 1st one is a variant of a classical result and the equality case of the 2nd one is a characterization of hypersurfaces. The 2nd main result is a Chern number inequality on it, which includes a reverse Miyaoka–Yau-type inequality. The 3rd main result is that the Chern numbers of a nef vector bundle over a compact Kähler manifold are bounded below by the Euler number. As an application, we classify compact Kähler manifolds with nonnegative bisectional curvature whose Chern numbers are all positive. A conjecture related to the Euler number of compact Kähler manifolds with nonpositive bisectional curvature is proposed, which can be regarded as a complex analogue to the Hopf conjecture.


2020 ◽  
Vol 20 (1) ◽  
pp. 109-116
Author(s):  
Masahiro Ohno

AbstractWe classify nef vector bundles on a smooth quadric surface with the first Chern class (2, 1) over an algebraically closed field of characteristic zero; we see in particular that such nef bundles are globally generated.


2021 ◽  
Vol 8 (1) ◽  
pp. 138-149
Author(s):  
Jie Liu ◽  
Wenhao Ou ◽  
Xiaokui Yang

Abstract In this note, we give a brief exposition on the differences and similarities between strictly nef and ample vector bundles, with particular focus on the circle of problems surrounding the geometry of projective manifolds with strictly nef bundles.


2018 ◽  
Vol 198 (2) ◽  
pp. 443-463
Author(s):  
Beorchia Valentina ◽  
Zucconi Francesco

2011 ◽  
Vol 57 (2) ◽  
pp. 409-416
Author(s):  
Mihai Anastasiei

Banach Lie AlgebroidsFirst, we extend the notion of second order differential equations (SODE) on a smooth manifold to anchored Banach vector bundles. Then we define the Banach Lie algebroids as Lie algebroids structures modeled on anchored Banach vector bundles and prove that they form a category.


Sign in / Sign up

Export Citation Format

Share Document