scholarly journals Practical Near-Collisions on the Compression Function of BMW

Author(s):  
Gaëtan Leurent ◽  
Søren S. Thomsen
Keyword(s):  
Author(s):  
Amit Kumar Chauhan ◽  
Abhishek Kumar ◽  
Somitra Kumar Sanadhya

Recently, Hosoyamada and Sasaki (EUROCRYPT 2020), and Xiaoyang Dong et al. (ASIACRYPT 2020) proposed quantum collision attacks against AES-like hashing modes AES-MMO and AES-MP. Their collision attacks are based on the quantum version of the rebound attack technique exploiting the differential trails whose probabilities are too low to be useful in the classical setting but large enough in the quantum setting. In this work, we present dedicated quantum free-start collision attacks on Hirose’s double block length compression function instantiated with AES-256, namely HCF-AES-256. The best publicly known classical attack against HCF-AES-256 covers up to 9 out of 14 rounds. We present a new 10-round differential trail for HCF-AES-256 with probability 2−160, and use it to find collisions with a quantum version of the rebound attack. Our attack succeeds with a time complexity of 285.11 and requires 216 qRAM in the quantum-attack setting, where an attacker can make only classical queries to the oracle and perform offline computations. We also present a quantum free-start collision attack on HCF-AES-256 with a time complexity of 286.07 which outperforms Chailloux, Naya-Plasencia, and Schrottenloher’s generic quantum collision attack (ASIACRYPT 2017) in a model when large qRAM is not available.


Author(s):  
Mario Lamberger ◽  
Florian Mendel ◽  
Christian Rechberger ◽  
Vincent Rijmen ◽  
Martin Schläffer
Keyword(s):  

2014 ◽  
Vol 4 (2) ◽  
Author(s):  
Harshvardhan Tiwari ◽  
Krishna Asawa

AbstractCryptographic hash functions are important cryptographic techniques and are used widely in many cryptographic applications and protocols. All the MD4 design based hash functions such as MD5, SHA-1, RIPEMD-160 and FORK-256 are built on Merkle-Damgård iterative method. Recent differential and generic attacks against these popular hash functions have shown weaknesses of both specific hash functions and their underlying Merkle-Damgård construction. In this paper we propose a hash function follows design principle of NewFORK-256 and based on HAIFA construction. Its compression function takes three inputs and generates a single output of 256-bit length. An extra input to a compression function is a 64-bit counter (number of bits hashed so far). HAIFA construction shows strong resistance against major generic and other cryptanalytic attacks. The security of proposed hash function against generic attacks, differential attack, birthday attack and statistical attack was analyzed in detail. It is shown that the proposed hash function has high sensitivity to an input message and is secure against different cryptanalytic attacks.


Author(s):  
Abdulaziz M Alkandari ◽  
Khalil Ibrahim Alkandari ◽  
Imad Fakhri Alshaikhli ◽  
Mohammad A. AlAhmad

A hash function is any function that can be used to map data of arbitrary sizeto data of fixed size. A hash function usually has two main components: a permutationfunction or compression function and mode of operation. We will propose a new concretenovel design of a permutation based hash functions called Gear in this paper. It is a hashfunction based on block cipher in Davies-Meyer mode. It uses the patched version ofMerkle-Damgård, i.e. the wide pipe construction as its mode of operation. Thus, theintermediate chaining value has at least twice larger length than the output hash. Andthe permutations functions used in Gear are inspired from the SHA-3 finalist Grøestl hashfunction which is originally inspired from Rijndael design (AES). There is a very strongconfusion and diffusion in Gear as a result.


Sign in / Sign up

Export Citation Format

Share Document