identification system
Recently Published Documents





2022 ◽  
Vol 18 (1) ◽  
pp. 1-24
Yi Zhang ◽  
Yue Zheng ◽  
Guidong Zhang ◽  
Kun Qian ◽  
Chen Qian ◽  

Gait, the walking manner of a person, has been perceived as a physical and behavioral trait for human identification. Compared with cameras and wearable sensors, Wi-Fi-based gait recognition is more attractive because Wi-Fi infrastructure is almost available everywhere and is able to sense passively without the requirement of on-body devices. However, existing Wi-Fi sensing approaches impose strong assumptions of fixed user walking trajectories, sufficient training data, and identification of already known users. In this article, we present GaitSense , a Wi-Fi-based human identification system, to overcome the above unrealistic assumptions. To deal with various walking trajectories and speeds, GaitSense first extracts target specific features that best characterize gait patterns and applies novel normalization algorithms to eliminate gait irrelevant perturbation in signals. On this basis, GaitSense reduces the training efforts in new deployment scenarios by transfer learning and data augmentation techniques. GaitSense also enables a distinct feature of illegal user identification by anomaly detection, making the system readily available for real-world deployment. Our implementation and evaluation with commodity Wi-Fi devices demonstrate a consistent identification accuracy across various deployment scenarios with little training samples, pushing the limit of gait recognition with Wi-Fi signals.

2022 ◽  
Vol 90 ◽  
pp. 114-134
Wendy M. Reinke ◽  
Keith C. Herman ◽  
Francis Huang ◽  
Chynna McCall ◽  
Shannon Holmes ◽  

Suraj Ingle

Abstract: The Energy Efficiency Design Index (EEDI) is a necessary benchmark for all new ships to prevent pollution from ships. MARPOL has also applied the Ship Energy Efficiency Management Plan (SEEMP) to all existing ships. The Energy Efficiency Operational Indicator (EEOI) provided by SEEMP is used to measure a ship's operational efficiency. The shipowner or operator can make strategic plans, such as routing, hull cleaning, decommissioning, new construction, and so on, by monitoring the EEOI. Fuel Oil Consumption is the most important factor in calculating EEOI (FOC). It is possible to measure it when a ship is in operation. This means that the EEOI of a ship can only be calculated by the shipowner or operator. Other stakeholders, such as the shipbuilding firm and Class, or those who do not have the measured FOC, can assess how efficiently their ships are working relative to other ships if the EEOI can be determined without the real FOC. We present a method to estimate the EEOI without requiring the actual FOC in this paper. The EEOI is calculated using data from the Automatic Identification System (AIS), ship static data, and publicly available environmental data. Big data technologies, notably Hadoop and Spark, are used because the public data is huge. We test the suggested method with real data, and the results show that it can predict EEOI from public data without having to use actual FOC Keywords: Ship operational efficiency, Energy Efficiency Operational Indicator (EEOI), Fuel Oil Consumption (FOC), Automatic Identification System (AIS), Big data

2022 ◽  
Vol 3 (1) ◽  
pp. 1-14
Kahyun Lee ◽  
Mehmet Kayaalp ◽  
Sam Henry ◽  
Özlem Uzuner

Many modern entity recognition systems, including the current state-of-the-art de-identification systems, are based on bidirectional long short-term memory (biLSTM) units augmented by a conditional random field (CRF) sequence optimizer. These systems process the input sentence by sentence. This approach prevents the systems from capturing dependencies over sentence boundaries and makes accurate sentence boundary detection a prerequisite. Since sentence boundary detection can be problematic especially in clinical reports, where dependencies and co-references across sentence boundaries are abundant, these systems have clear limitations. In this study, we built a new system on the framework of one of the current state-of-the-art de-identification systems, NeuroNER, to overcome these limitations. This new system incorporates context embeddings through forward and backward n -grams without using sentence boundaries. Our context-enhanced de-identification (CEDI) system captures dependencies over sentence boundaries and bypasses the sentence boundary detection problem altogether. We enhanced this system with deep affix features and an attention mechanism to capture the pertinent parts of the input. The CEDI system outperforms NeuroNER on the 2006 i2b2 de-identification challenge dataset, the 2014 i2b2 shared task de-identification dataset, and the 2016 CEGS N-GRID de-identification dataset ( p < 0.01 ). All datasets comprise narrative clinical reports in English but contain different note types varying from discharge summaries to psychiatric notes. Enhancing CEDI with deep affix features and the attention mechanism further increased performance.

2022 ◽  
Vol 31 (1) ◽  
pp. 1-27
Yaqin Zhou ◽  
Jing Kai Siow ◽  
Chenyu Wang ◽  
Shangqing Liu ◽  
Yang Liu

Security patches in open source software, providing security fixes to identified vulnerabilities, are crucial in protecting against cyber attacks. Security advisories and announcements are often publicly released to inform the users about potential security vulnerability. Despite the National Vulnerability Database (NVD) publishes identified vulnerabilities, a vast majority of vulnerabilities and their corresponding security patches remain beyond public exposure, e.g., in the open source libraries that are heavily relied on by developers. As many of these patches exist in open sourced projects, the problem of curating and gathering security patches can be difficult due to their hidden nature. An extensive and complete security patches dataset could help end-users such as security companies, e.g., building a security knowledge base, or researcher, e.g., aiding in vulnerability research. To efficiently curate security patches including undisclosed patches at large scale and low cost, we propose a deep neural-network-based approach built upon commits of open source repositories. First, we design and build security patch datasets that include 38,291 security-related commits and 1,045 Common Vulnerabilities and Exposures (CVE) patches from four large-scale C programming language libraries. We manually verify each commit, among the 38,291 security-related commits, to determine if they are security related. We devise and implement a deep learning-based security patch identification system that consists of two composite neural networks: one commit-message neural network that utilizes pretrained word representations learned from our commits dataset and one code-revision neural network that takes code before revision and after revision and learns the distinction on the statement level. Our system leverages the power of the two networks for Security Patch Identification. Evaluation results show that our system significantly outperforms SVM and K-fold stacking algorithms. The result on the combined dataset achieves as high as 87.93% F1-score and precision of 86.24%. We deployed our pipeline and learned model in an industrial production environment to evaluate the generalization ability of our approach. The industrial dataset consists of 298,917 commits from 410 new libraries that range from a wide functionalities. Our experiment results and observation on the industrial dataset proved that our approach can identify security patches effectively among open sourced projects.

2022 ◽  
Vol 11 (1) ◽  
pp. 60
Zhihuan Wang ◽  
Chenguang Meng ◽  
Mengyuan Yao ◽  
Christophe Claramunt

Maritime ports are critical logistics hubs that play an important role when preventing the transmission of COVID-19-imported infections from incoming international-going ships. This study introduces a data-driven method to dynamically model infection risks of international ports from imported COVID-19 cases. The approach is based on global Automatic Identification System (AIS) data and a spatio-temporal clustering algorithm that both automatically identifies ports and countries approached by ships and correlates them with country COVID-19 statistics and stopover dates. The infection risk of an individual ship is firstly modeled by considering the current number of COVID-19 cases of the approached countries, increase rate of the new cases, and ship capacity. The infection risk of a maritime port is mainly calculated as the aggregation of the risks of all of the ships stopovering at a specific date. This method is applied to track the risk of the imported COVID-19 of the main cruise ports worldwide. The results show that the proposed method dynamically estimates the risk level of the overseas imported COVID-19 of cruise ports and has the potential to provide valuable support to improve prevention measures and reduce the risk of imported COVID-19 cases in seaports.

2022 ◽  
Vol 10 (1) ◽  
pp. 112
Konrad Wolsing ◽  
Linus Roepert ◽  
Jan Bauer ◽  
Klaus Wehrle

The automatic identification system (AIS) was introduced in the maritime domain to increase the safety of sea traffic. AIS messages are transmitted as broadcasts to nearby ships and contain, among others, information about the identification, position, speed, and course of the sending vessels. AIS can thus serve as a tool to avoid collisions and increase onboard situational awareness. In recent years, AIS has been utilized in more and more applications since it enables worldwide surveillance of virtually any larger vessel and has the potential to greatly support vessel traffic services and collision risk assessment. Anomalies in AIS tracks can indicate events that are relevant in terms of safety and also security. With a plethora of accessible AIS data nowadays, there is a growing need for the automatic detection of anomalous AIS data. In this paper, we survey 44 research articles on anomaly detection of maritime AIS tracks. We identify the tackled AIS anomaly types, assess their potential use cases, and closely examine the landscape of recent AIS anomaly research as well as their limitations.

2022 ◽  
pp. 1-22
Magdalena I. Asborno ◽  
Sarah Hernandez ◽  
Kenneth N. Mitchell ◽  
Manzi Yves

Abstract Travel demand models (TDMs) with freight forecasts estimate performance metrics for competing infrastructure investments and potential policy changes. Unfortunately, freight TDMs fail to represent non-truck modes with levels of detail adequate for multi-modal infrastructure and policy evaluation. Recent expansions in the availability of maritime movement data, i.e. Automatic Identification System (AIS), make it possible to expand and improve representation of maritime modes within freight TDMs. AIS may be used to track vessel locations as timestamped latitude–longitude points. For estimation, calibration and validation of freight TDMs, this work identifies vessel trips by applying network mapping (map-matching) heuristics to AIS data. The automated methods are evaluated on a 747-mile inland waterway network, with AIS data representing 88% of vessel activity. Inspection of 3820 AIS trajectories was used to train the heuristic parameters including stop time, duration and location. Validation shows 84⋅0% accuracy in detecting stops at ports and 83⋅5% accuracy in identifying trips crossing locks. The resulting map-matched vessel trips may be applied to generate origin–destination matrices, calculate time impedances, etc. The proposed methods are transferable to waterways or maritime port systems, as AIS continues to grow.

Semantic Web ◽  
2022 ◽  
pp. 1-8
Robert Forkel ◽  
Harald Hammarström

Glottocodes constitute the backbone identification system for the language, dialect and family inventory Glottolog ( In this paper, we summarize the motivation and history behind the system of glottocodes and describe the principles and practices of data curation, technical infrastructure and update/version-tracking systematics. Since our understanding of the target domain – the dialects, languages and language families of the entire world – is continually evolving, changes and updates are relatively common. The resulting data is assessed in terms of the FAIR (Findable, Accessible, Interoperable, Reusable) Guiding Principles for scientific data management and stewardship. As such the glottocode-system responds to an important challenge in the realm of Linguistic Linked Data with numerous NLP applications.

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Zaid Abdi Alkareem Alyasseri ◽  
Osama Ahmad Alomari ◽  
Mohammed Azmi Al-Betar ◽  
Mohammed A. Awadallah ◽  
Karrar Hameed Abdulkareem ◽  

Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain’s electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86 % using only 24 sensors with AR 20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.

Sign in / Sign up

Export Citation Format

Share Document