An innovative cross wedge rolling preforming operation for warm forging

Author(s):  
H. Kache ◽  
R. Nickel ◽  
B-.A. Behrens
2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


2013 ◽  
Vol 213 (8) ◽  
pp. 1364-1369 ◽  
Author(s):  
E. Virtanen ◽  
C.J. Van Tyne ◽  
B.S. Levy ◽  
G. Brada
Keyword(s):  

2015 ◽  
Vol 83 (1-4) ◽  
pp. 145-155 ◽  
Author(s):  
W. F. Peng ◽  
J. H. Zhang ◽  
G. X. Huang ◽  
W. P. Liu ◽  
X. D. Shu ◽  
...  

2014 ◽  
Vol 494-495 ◽  
pp. 457-460 ◽  
Author(s):  
Bin Hu ◽  
Xue Dao Shu ◽  
Peng Hui Yu ◽  
Wen Fei Peng

The paper is based on the newest hollow railway axle, which utilizes the Pro/E designed multi-wedge cross wedge rolling (MCWR) model, utilizes the finite element analysis software DEFORM-3D to complete the numerical simulation about the whole stage of the hollow railway axle forming process, and analyzes the strain rule at the broadening stage of the hollow railway axle, especially conducts a detailed research on forming character into the strain rule at the multi-wedge transition stage, and finally gets the strain forming mechanism of the hollow railway axle at the broadening stage. The result of the research on the strain rule poses great scientific significance on enhancing the product quality and the production efficiency of the hollow railway axle, and improving the theory of multi-wedge cross wedge rolling.


2010 ◽  
Vol 37-38 ◽  
pp. 1416-1420 ◽  
Author(s):  
Ran Zhao ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Deep study on Inside Right-angle Step (IRS) forming process was conducted to improve the precision of its (IRS) forming. According to its actual forming process, the zone, or the undeformed zone, was looked as semi-spiral declined cone and excluded the contact zone. A new algorithm was developed for calculating the size of the undeformed zone. More simple mathematical models and expressions weredeveloped for solving the shaping curve. The model was verified in terms of its simplicity and correctness based on the numerical simulation.


2016 ◽  
Vol 80 ◽  
pp. 13003 ◽  
Author(s):  
Hongchao Ji ◽  
Jinping Liu ◽  
Baoyu Wang ◽  
Jianguo Lin ◽  
Xuefeng Tang

2011 ◽  
Vol 381 ◽  
pp. 72-75
Author(s):  
Bin Li

This paper investigates the interfacial slip between the forming tool and workpiece in a relatively new metal forming process, cross-wedge rolling. Based on the finite elements method, three-dimensional mechanical model of cross wedge rolling process has been developed. Examples of numerical simulation for strain, stress distributions and rolling load components have been included. The main advantages of the finite element method are: the capability of obtaining detailed solutions of the mechanics in a deforming body, namely, stresses, shapes, strains or contact pressure distributions; and the computer codes, can be used for a large variety of problems by simply changing the input data.


Sign in / Sign up

Export Citation Format

Share Document