stress distributions
Recently Published Documents


TOTAL DOCUMENTS

2141
(FIVE YEARS 232)

H-INDEX

63
(FIVE YEARS 7)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Frederik Dahms ◽  
Werner Homberg

Friction-spinning as an innovative incremental forming process enables high degrees of deformation in the field of tube and sheet metal forming due to self-induced heat generation in the forming area. The complex thermomechanical conditions generate non-uniform residual stress distributions. In order to specifically adjust these residual stress distributions, the influence of different process parameters on residual stress distributions in flanges formed by the friction-spinning of tubes is investigated using the design of experiments (DoE) method. The feed rate with an effect of −156 MPa/mm is the dominating control parameter for residual stress depth distribution in steel flange forming, whereas the rotation speed of the workpiece with an effect of 18 MPa/mm dominates the gradient of residual stress generation in the aluminium flange-forming process. A run-to-run predictive control system for the specific adjustment of residual stress distributions is proposed and validated. The predictive model provides an initial solution in the form of a parameter set, and the controlled feedback iteratively approaches the target value with new parameter sets recalculated on the basis of the deviation of the previous run. Residual stress measurements are carried out using the hole-drilling method and X-ray diffraction by the cosα-method.


Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 91-113
Author(s):  
Adam G. Taylor ◽  
Jae H. Chung

The present paper provides a qualitative discussion of the evolution of contact traction fields beneath rigid shallow foundations resting on granular materials. A phenomenological similarity is recognized in the measured contact traction fields of rigid footings and at the bases of sandpiles. This observation leads to the hypothesis that the stress distributions are brought about by the same physical phenomena, namely the development of arching effects through force chains and mobilized intergranular friction. A set of semi-empirical equations are suggested for the normal and tangential components of this contact traction based on past experimental measurements and phenomenological assumptions of frictional behaviors at the foundation system scale. These equations are then applied to the prescribed boundary conditions for the analysis of the settlement, resistance, and stress fields in supporting granular materials beneath the footing. A parametric sensitivity study is performed on the proposed modelling method, highlighting solutions to the boundary-value problems in an isotropic, homogeneous elastic half-space.


Author(s):  
Sathya Prasad Mangalaramanan

Abstract Statically admissible stress distributions are necessary to evaluate lower bound limit loads. Over the last three decades, several methods have been postulated to obtain these distributions using iterative elastic finite element analyses. Some of the pioneering techniques are the reduced modulus, r-node, elastic compensation, and linear matching methods, to mention a few. A new method, called the Bounded Elastic Moduli Multiplier Technique (BEMMT), is proposed and the theoretical underpinnings thereof are explained in this paper. BEMMT demonstrates greater robustness, more generality, and better stress distributions, consistently leading to lower-bound limit loads that are closer to elastoplastic finite element analysis estimates. BEMMT also questions the validity of the prevailing power law based stationary stress distributions. An accompanying research offers several case studies to validate this claim.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 177
Author(s):  
Lorenzo Capponi ◽  
Tommaso Tocci ◽  
Mariapaola D'Imperio ◽  
Syed Haider Jawad Abidi ◽  
Massimiliano Scaccia ◽  
...  

<p>Experimental procedures are often involved in the numerical models validation. To define the behaviour of a structure, its underlying dynamics and stress distributions are generally investigated. In this research, a multi-instrumental and multi-spectral method is proposed in order to validate the numerical model of the Inspection Robot mounted on the new San Giorgio's Bridge on the Polcevera river. An infrared thermoelasticity-based approach is used to measure stress-concentration factors and, additionally, an innovative methodology is implemented to define the natural frequencies of the Robot Inspection structure, based on the detection of ArUco fiducial markers. Established impact hammer procedure is also performed for the validation of the results.</p>


Author(s):  
Sathya Prasad Mangalaramanan

Abstract An accompanying paper provides the theoretical underpinnings of a new method to determine statically admissible stress distributions in a structure, called Bounded elastic moduli multiplier technique (BEMMT). It has been shown that, for textbook cases such as thick cylinder, beam, etc., the proposed method offers statically admissible stress distributions better than the power law and closer to elastic-plastic solutions. This paper offers several examples to demonstrate the robustness of this method. Upper and lower bound limit loads are calculated using iterative elastic analyses using both power law and BEMMT. These results are compared with the ones obtained from elastic-plastic FEA. Consistently BEMMT has outperformed power law when it comes to estimating lower bound limit loads.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Amer Ibrahim Al-Omari ◽  
Amal S. Hassan ◽  
Naif Alotaibi ◽  
Mansour Shrahili ◽  
Heba F. Nagy

In survival analysis, the two-parameter inverse Lomax distribution is an important lifetime distribution. In this study, the estimation of R = P   Y < X is investigated when the stress and strength random variables are independent inverse Lomax distribution. Using the maximum likelihood approach, we obtain the R estimator via simple random sample (SRS), ranked set sampling (RSS), and extreme ranked set sampling (ERSS) methods. Four different estimators are developed under the ERSS framework. Two estimators are obtained when both strength and stress populations have the same set size. The two other estimators are obtained when both strength and stress distributions have dissimilar set sizes. Through a simulation experiment, the suggested estimates are compared to the corresponding under SRS. Also, the reliability estimates via ERSS method are compared to those under RSS scheme. It is found that the reliability estimate based on RSS and ERSS schemes is more efficient than the equivalent using SRS based on the same number of measured units. The reliability estimates based on RSS scheme are more appropriate than the others in most situations. For small even set size, the reliability estimate via ERSS scheme is more efficient than those under RSS and SRS. However, in a few cases, reliability estimates via ERSS method are more accurate than using RSS and SRS schemes.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7845
Author(s):  
Quanquan Yang ◽  
He Cao ◽  
Youcheng Tang ◽  
Yun Li ◽  
Xiaogang Chen

An experimental investigation is presented for the stress distributions in functionally graded plates containing a circular hole. On the basis of the authors’ previously constructed theoretical model, two kinds of graded plates made of discrete rings with increasing or decreasing Young’s modulus were designed and fabricated in virtue of multi-material 3D printing. The printed graded plates had accurate size, smooth surface, and good interface. The strains of two graded plates under uniaxial tension were measured experimentally using strain gages. The stresses were calculated within the range of linear elastic from the measured strains and compared with analytical theory. It is found that the experimental results are consistent with the theoretical results, and both of them indicate that the stress concentration around the hole reduces obviously in graded plates with radially increasing Young’s modulus, in comparison with that of perforated homogenous plates. The successful experiment in the paper provides a good basis and support for the establishment of theoretical models and promotes the in-depth development of the research field of stress concentration in functionally graded plates.


Author(s):  
Zelalem Abathun Mehari ◽  
Jingtao Han

With the growing demand for rectangular and square hollow steel sections in the last few decades, the cold roll forming process has become a widely acknowledged hollow sections manufacturing method; however, residual stress generated during the roll forming process is one of the primary concerns on roll-formed products. In this regard, several researchers have conducted numerical and experimental investigations of residual stress distributions on roll-formed steel sections. However, most of the studies found in the literature have been confined to the measurement of residual surface stresses. On the other hand, experimental studies conducted on fatigue and load-carrying capacity of hollow structural steels have shown that there is indeed a simple relation between the through-thickness residual stress distributions and mechanical properties of structures. Thus, this paper employed a proper numerical modelling procedure using LS-DYNA’s finite element code to explore through-thickness residual stress distributions generated during the roll forming process of rectangular and square hollow steel sections from different material grades. Moreover, a small-scale parametric study was conducted to explore the effects of the partial heating roll forming method on through-the-thickness residual stress distributions to satisfy the growing demand for residual stress-free roll-formed products.


Sign in / Sign up

Export Citation Format

Share Document