Genetic Optimization Design of Type-1 and Type-2 Fuzzy Systems for Longitudinal Control of an Airplane

Author(s):  
Oscar Castillo
Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 206 ◽  
Author(s):  
Ivette Miramontes ◽  
Juan Guzman ◽  
Patricia Melin ◽  
German Prado-Arechiga

In this paper, the optimal designs of type-1 and interval type-2 fuzzy systems for the classification of the heart rate level are presented. The contribution of this work is a proposed approach for achieving the optimal design of interval type-2 fuzzy systems for the classification of the heart rate in patients. The fuzzy rule base was designed based on the knowledge of experts. Optimization of the membership functions of the fuzzy systems is done in order to improve the classification rate and provide a more accurate diagnosis, and for this goal the Bird Swarm Algorithm was used. Two different type-1 fuzzy systems are designed and optimized, the first one with trapezoidal membership functions and the second with Gaussian membership functions. Once the best type-1 fuzzy systems have been obtained, these are considered as a basis for designing the interval type-2 fuzzy systems, where the footprint of uncertainty was optimized to find the optimal representation of uncertainty. After performing different tests with patients and comparing the classification rate of each fuzzy system, it is concluded that fuzzy systems with Gaussian membership functions provide a better classification than those designed with trapezoidal membership functions. Additionally, tests were performed with the Crow Search Algorithm to carry out a performance comparison, with Bird Swarm Algorithm being the one with the best results.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Leticia Cervantes ◽  
Oscar Castillo ◽  
Denisse Hidalgo ◽  
Ricardo Martinez-Soto

We propose to use an approach based on fuzzy logic for the adaptation of gap generation and mutation probability in a genetic algorithm. The performance of this method is presented with the benchmark problem of flight control and results show how it can decrease the error during the flight of an airplane using fuzzy logic for some parameters of the genetic algorithm. In this case of study, we use fuzzy systems for adapting two parameters of the genetic algorithm to improve the design of a type 2 fuzzy controller and enhance its performance to achieve flight control. Finally, a statistical test is presented to prove the performance enhancement in the application using fuzzy adaptation in the genetic algorithm. It is important to mention that not only is this idea for control problems but also it can be used in pattern recognition and many different problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Sadegh Aminifar ◽  
Arjuna Marzuki

This paper studies uncertainty and its effect on system response displacement. The paper also describes how IT2MFs (interval type-2 membership functions) differentiate from T1MFs (type-1 membership functions) by adding uncertainty. The effect of uncertainty is modeled clearly by introducing a technique that describes how uncertainty causes membership degree reduction and changing the fuzzy word meanings in fuzzy logic controllers (FLCs). Several criteria are discussed for the measurement of the imbalance rate of internal uncertainty and its effect on system behavior. Uncertainty removal is introduced to observe the effect of uncertainty on the output. The theorem of uncertainty avoidance is presented for describing the role of uncertainty in interval type-2 fuzzy systems (IT2FSs). Another objective of this paper is to derive a novel uncertainty measure for IT2MFs with lower complexity and clearer presentation. Finally, for proving the affectivity of novel interpretation of uncertainty in IT2FSs, several investigations are done.


Sign in / Sign up

Export Citation Format

Share Document