fuzzy controller
Recently Published Documents


TOTAL DOCUMENTS

4791
(FIVE YEARS 809)

H-INDEX

67
(FIVE YEARS 10)

Author(s):  
Viji Karthikeyan ◽  
Anil Kumar Tiwari ◽  
Agalya Vedi ◽  
Buvana Devaraju

The major thrust of the paper is on designing a fuzzy logic approach has been combined with a well-known robust technique discrete sliding mode control (DSMC) to develop a new strategy for discrete sliding mode fuzzy control (DSMFC) in direct current (DC-DC) converter. Proposed scheme requires human expertise in the design of the rule base and is inherently stable. It also overcomes the limitation of DSMC, which requires bounds of uncertainty to be known for development of a DSMC control law. The scheme is also applicable to higher order systems unlike model following fuzzy control, where formation of rule base becomes difficult with rise in number of error and error derivative inputs. In this paper the linearization of input-output performance is carried out by the DSMFC algorithm for boost converter. The DSMFC strategy minimizes the chattering problem faced by the DSMC. The simulated performance of a discrete sliding mode fuzzy controller is studied and the results are investigated.


Author(s):  
Javier Eduardo Martinez Baquero ◽  
Jairo Cuero Ortega ◽  
Robinson Jimenez Moreno

This article presents the design of a fuzzy controller embedded in a microcontroller aimed at implementing a low-cost, modular process control system. The fuzzy system's construction is based on a classical proportional and derivative controller, where inputs of error and its derivate depend on the difference between the desired setpoint and the actual level; the goal is to control the water level of coupled tanks. The process is oriented to control based on the knowledge that facilitates the adjustment of the output variable without complex mathematical modeling. In different response tests of the fuzzy controller, a maximum over-impulse greater than 8% or a steady-state error greater than 2.1% was not evidenced when varying the setpoint.


2022 ◽  
Author(s):  
Chuan-qiang Fan ◽  
Wei-he Xie ◽  
Feng Liu

By using pythagorean fuzzy sets and T-S fuzzy descriptor systems, the new (α, β)-pythagorean fuzzy descriptor systems are proposed in this paper. Their definition is given firstly, and the stability of this kind of systems is studied, the relation of (α, β)-pythagorean fuzzy descriptor systems and T-S fuzzy descriptor systems is discussed. The (α, β)-pythagorean fuzzy controller and the stability of (α, β)-pythagorean fuzzy descriptor systems are deeply researched. The (α, β)-pythagorean fuzzy descriptor systems can be better used to solve the problems of actual nonlinear control. The (α, β)-pythagorean fuzzy descriptor systems will be a new research direction, and will become a universal method to solve practical problems. Finally, an example is given to illustrate effectiveness of the proposed method.


Author(s):  
Jili Tao ◽  
Ridong Zhang ◽  
Zhijun Qiao ◽  
Longhua Ma

A novel fuzzy energy management strategy (EMS) based on improved Q-learning controller and genetic algorithm (GA) is proposed for the real-time power split between fuel cell and supercapacitor of hybrid electric vehicle (HEV). Different from driving pattern recognition–based method, Q-Learning controller takes actions by observing the driving states and compensates to fuzzy controller, that is, no need to know the driving pattern in advance. Aimed to prolong the fuel cell lifetime and decrease its energy consumption, the initial values of Q-table are optimized by GA. Moreover, to enhance the environment adaptation capability, the learning strategy of Q-learning controller is improved. Two adaptive energy management strategies have been compared, and simulation results show that current fluctuation can be reduced by 6.9% and 41.5%, and H2 consumption can be saved by 0.35% and 6.08%, respectively. Meanwhile, state of charge (SOC) of supercapacitor is sustained within the desired safe range.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 481
Author(s):  
György Károlyi ◽  
Anna I. Pózna ◽  
Katalin M. Hangos ◽  
Attila Magyar

Fast charging is an attractive way of charging batteries; however, it may result in an undesired degradation of battery performance and lifetime because of the increase in battery temperature during fast charge. In this paper we propose a simple optimized fuzzy controller that is responsible for the regulation of the charging current of a battery charging system. The basis of the method is a simple dynamic equivalent circuit type model of the Li-ion battery that takes into account the temperature dependency of the model parameters, too. Since there is a tradeoff between the charging speed determined by the value of the charging current and the increase in temperature of the battery, the proposed fuzzy controller is applied for controlling the charging current as a function of the temperature. The controller is optimized using a genetic algorithm to ensure a jointly minimal charging time and battery temperature increase during the charging. The control method is adaptive in the sense that we use parameter estimation of an underlying dynamic battery model to adapt to the actual status of the battery after each charging. The performance and properties of the proposed optimized charging control system are evaluated using a simulation case study. The evaluation was performed in terms of the charge profiles, using the fitness values of the individuals, and in terms of the charge performance on the actual battery. The proposed method has been evaluated compared to the conventional contant current-constant voltage methods. We have found that the proposed GA-fuzzy controller gives a slightly better performance in charging time while significantly decreasing the temperature increase.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 419
Author(s):  
Piotr Derugo ◽  
Krzysztof Szabat ◽  
Tomasz Pajchrowski ◽  
Krzysztof Zawirski

This paper presents original concepts of control systems for an electrical drive with an elastic mechanical coupling between the motor and the driven mechanism. The synthesis procedure of the speed controller uses a proposed quality index (cost function) of system operation ensures the minimization of both tracking errors and torsional vibrations. Proper selection of the cost function focusses more on the reduction of torsional vibrations due to their negative influence on the drive’s mechanical coupling vitality. The omission of the plant identification of an adaptive fuzzy controller was proposed. Two types of fuzzy controllers were analyzed, namely with type I and type II fuzzy membership functions. The novelty of the presented approach is in the application of a Petri transition layer in a type II fuzzy controller which reduces the numerical complexity in case of a large number of complicated type II fuzzy sets. The presented simulation and experimental results prove that the best dumping of mechanical vibrations ensures the adaptive fuzzy controller with type II functions and a Petri transition layer.


2022 ◽  
Vol 12 (2) ◽  
pp. 541
Author(s):  
Helbert Espitia ◽  
Iván Machón ◽  
Hilario López

One characteristic of neuro-fuzzy systems is the possibility of incorporating preliminary information in their structure as well as being able to establish an initial configuration to carry out the training. In this regard, the strategy to establish the configuration of the fuzzy system is a relevant aspect. This document displays the design and implementation of a neuro-fuzzy controller based on Boolean relations to regulate the angular position in an electromechanical plant, composed by a motor coupled to inertia with friction (a widely studied plant that serves to show the control system design process). The structure of fuzzy systems based on Boolean relations considers the operation of sensors and actuators present in the control system. In this way, the initial configuration of fuzzy controller can be determined. In order to perform the optimization of the neuro-fuzzy controller, the continuous plant model is converted to discrete time to be included in the closed-loop controller training equations. For the design process, first the optimization of a Proportional Integral (PI) linear controller is carried out. Thus, linear controller parameters are employed to establish the structure and initial configuration of the neuro-fuzzy controller. The optimization process also includes weighting factors for error and control action in such a way that allows having different system responses. Considering the structure of the control system, the optimization algorithm (training algorithm) employed is dynamic back propagation. The results via simulations show that optimization is achieved in the linear and neuro-fuzzy controllers using different weighting values for the error signal and control action. It is also observed that the proposed control strategy allows disturbance rejection.


Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 121979
Author(s):  
Matheus H.R. Miranda ◽  
Fabrício L. Silva ◽  
Maria A.M. Lourenço ◽  
Jony J. Eckert ◽  
Ludmila C.A. Silva

Sign in / Sign up

Export Citation Format

Share Document